Zhouchen Lin - Huan Li - Cong Fang

Alternating
Direction Method

I of Multipliers for

Machine Learning

ADMA

Alternating Direction Method of Multipliers
for Machine Learning

Zhouchen Lin * Huan Li » Cong Fang

Alternating Direction
Method of Multipliers
for Machine Learning

@ Springer

Zhouchen Lin Huan Li

Key Lab. of Machine Perception (MoE) Institute of Robotics and Automatic
School of Artificial Intelligence Information Systems

Peking University College of Artificial Intelligence
Beijing, China Nankai University

Tianjin, China

Cong Fang

Key Lab. of Machine Perception (MoE)
School of Artificial Intelligence

Peking University

Beijing, China

ISBN 978-981-16-9839-2 ISBN 978-981-16-9840-8 (eBook)
https://doi.org/10.1007/978-981-16-9840-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-9840-8

To our families. Without your great support,
this book would not exist and even our
careers would be meaningless.

Foreword

Alternating direction method of multipliers (ADMM) is an important algorithm for
solving constrained optimization problems. It particularly fits well for the machine
learning community because the latter basically favors algorithms with low per-
iteration cost and does not need high numerical precision. Due to its versatility and
high usability, I would not hesitate to make it one of the top recommendations
if one wants to develop a general-purpose optimization library or AI chip. So
there has been renewed interest on ADMM since its successful application in
solving low-rank models around 2010. Since then, ADMM has been extended
significantly, going far beyond the traditional setting: deterministic, convex, two-
blocks of variables, and centralized. Unfortunately, the vast literature on ADMM
is scattered across various sources, making it difficult for non-experts to track the
advances in this important optimization technique. This book resolves this issue in a
timely manner. Its materials are quite comprehensive, covering ADMM for various
situations: convex (and deterministic), nonconvex, stochastic, and distributed. It is
self-contained, with detailed proofs, so that even a beginner can grasp the state-
of-the-art quickly, not just the pseudo-codes but also the proof techniques. More
importantly, this book has not simply compiled various papers together. It has
actually completely rewritten the materials so that the notations are consistent
and the deductions are smooth, removing the major obstacle of reading existing
literatures. In addition, the book puts more emphasis on convergence rafes rather
than only convergence. This makes the theoretical analysis extremely informative
to practitioners. I would say that this book is definitely a valuable reference for
researchers and practitioners from multiple areas, including optimization, signal
processing, and machine learning.

The authors, Zhouchen Lin, Huan Li, and Cong Fang, are experts in the
intersection of optimization and machine learning. Besides contributing greatly
to this field with technical papers, they have also endeavored a lot in sorting

vii

viii Foreword

out valuable algorithms that are fit for engineers, making another kind of good
contribution to the community. After their previous book, Accelerated Optimization
for Machine Learning: First-Order Algorithms, which I like very much, I am happy
to advocate their book once more.

Xi’an Jiaotong University, Xi’an, China Zongben Xu
October 2021

Foreword

With the advance of sensor, communication, and storage technologies, data acqui-
sition has become more ubiquitous than any time in the past. This has enabled us
to learn a considerable amount of valuable information from big diverse data sets
for effective inference, estimation, tracking, and decision-making. Learning from
data requires the proper modelling and analysis of big data sets, which are usu-
ally formulated as optimization problems. Consequently, large-scale optimization
involving big data has attracted significant attention from various areas, including
signal processing, machine learning, and operations research.

To minimize a cost function involving a large number of variables, the most
popular approach is block coordinate descent/minimization (sometimes also called
alternating optimization). However, if variables are coupled linearly, the block
coordinate descent/minimization method no longer works. The alternating direction
method of multipliers (ADMM) can be considered an extension of block coordinate
descent/minimization method for linearly constrained optimization problems. Given
the abundance of application problems that can be cast in the form of linearly con-
strained optimization problems (convex/nonconvex, smooth/nonsmooth), ADMM
has been the method of choice for machine learning and signal processing problems
involving big data. It is widely (sometimes wildly) applied in many different
contexts, often times without sufficient theoretical underpinning on its convergence.

This book provides an excellent summary of the state of the art for the theoretical
research on ADMM. It introduces the basic mathematical form of ADMM as well
as its variations. The core material is on the convergence analysis of ADMM for
different classes of linearly constrained optimization problems, including convex,
nonconvex, deterministic, stochastic, and centralized/distributed. The mathematical
treatment is concise, up to date, and rigorous. A nice bonus is the last chapter where
the practical aspects of ADMM are discussed, which should be very valuable for
practitioners or first-time users of ADMM.

The first author is a well-known researcher in optimization, particularly on
optimization methods for machine learning applications. The text is written in a
reader friendly manner, complete with appendices that introduce the mathematical

ix

X Foreword

tools and background for the convergence analysis covered in the book. It should be
a valuable reference for both researchers and users on ADMM and will be a great
read for graduate students in optimization, statistics, machine learning, and signal
processing.

The Chinese University of Hong Kong, Shenzhen, China Zhi-Quan Luo
November 2021

Preface

Alternating direction method of multipliers (ADMM) is a magic algorithm to me. In
my biased opinion, it is more or less a universal method for solving a wide range of
constrained problems that ordinary practitioners in machine learning may encounter.
Unlike gradient descent, which is roughly a universal method for unconstrained
problems, ADMM appears to be more elegant yet less transparent. The secret
lies in the Lagrange multiplier, which temporarily makes the constrained problem
unconstrained, not only removing the difficulty in handling the constraints but also
overcoming some inherent defects of the penalty method and the projected gradient
descent, while non-experts are much easier to think of the latter two methods.
The Lagrange multiplier also plays a central role in the proofs of convergence and
convergence rate of ADMM. With possible exaggeration, I would say that one who
cannot appreciate the beauty of ADMM cannot be a good researcher in optimization.

Since my first encounter with ADMM around 2009, I have seen that more
and more machine learning people are using ADMM and extending its scope
of applications. I also benefited a lot from and contributed a bit to the new
developments. Yet, I also found that many engineers are not using ADMM correctly
(the most notable example is to naively apply the ADMM for two blocks of variables
to problems with more than two blocks). There has been an excellent tutorial
on ADMM, Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers, written by Boyd et al. in 2011. Nonetheless, it is
now 10 years old and does not cover the new developments, which I actually think
are more important than the traditional ones for the wider applications of ADMM,
because the new developments were done out of demands from real applications
in signal processing and machine learning. So, I think that writing a new book on
ADMM will be very useful for many people, including myself when teaching and
advising students. My goal is to incorporate the most important aspects of the new
developments in ADMM, rather than being confined to the traditional materials,
which are typically for convex and two-block cases. Clearly, I am unable to review

xi

xii Preface

Prof. Bingsheng He

all papers on ADMM. So, the strategy is to choose representative algorithms by their
types (e.g., convex, nonconvex, stochastic, and distributed) instead. As a result, one
should not be surprised that some variants of ADMM are not included (because
they are not the most representative ones of their types but just discuss in more
depth, or are too complex to use or analyze) while some variants of ADMM appear
to be rather crude but they are still included (because that type of ADMM is less
explored). Of course, personal flavor and limited knowledge also matter greatly.
Finally, being self-contained is also very important. So, I also want to present proofs
in detail.

I truly feel lucky as my former PhD students, Huan Li and Cong Fang, agreed
to join this task even though they have graduated, and I have tortured them in
the previous book, Accelerated Optimization for Machine Learning: First-Order
Algorithms. 1 am also very lucky that more students contributed to the proofreading,
including checking the proofs thoroughly (most of the proofs have undergone
rewriting, rather than being directly copied from corresponding papers), which
made the work less daunting. Nonetheless, the book is still far from being perfect.
One of the major regrets is that using adaptive penalty is critical for speeding up
convergence (see Sect.7.1.2), but all the algorithms introduced in this book use
a fixed penalty. Actually, most of the literatures do not consider adaptive penalty.
Although it is quite possible that some of the algorithms introduced in this book
may also work with adaptive penalties, we are unable to test which adaptive penalty
strategy to use and then rewrite the proofs for adaptive penalties (actually drastic
changes in the proofs may be necessary). The other regret is that we have to leave
out learning-based ADMM, an emerging yet immature type of ADMM, as the
theoretical guarantees are weak.

I expect that there will still be errors in the book despite the great efforts from my
students and myself. So, if the readers detect any problem, please feel free to write
an email to zclin2000 @hotmail.com.

Finally, I would like to pay tribute to Prof. Bingsheng He. He has devoted most
of his life to ADMM and contributed significantly to the research and education of
ADMM. This book also introduces many of his works. I am glad to see that he has

Preface xiii

been well recognized in China, manifested by winning the “Operations Research”
Research Award of the Operations Research Society of China in 2014. However, he
is much less recognized internationally. I hope that my advocacy here could add to
his credit.

Peking University, Beijing, China Zhouchen Lin
October 2021

Acknowledgments

We would like to thank all our collaborators and friends, especially Bingsheng He,
Licheng Jiao, Junchi Li, Qing Ling, Guangcan Liu, Risheng Liu, Yuanyuan Liu,
Canyi Lu, Zhi-Quan Luo, Yi Ma, Fanhua Shang, Zaiwen Wen, Xingyu Xie, Zongben
Xu, Shuicheng Yan, Wotao Yin, Xiaoming Yuan, Xiaotong Yuan, Yaxiang Yuan,
Tong Zhang, and Pan Zhou. We also thank Yiming Dong, Dr. Yuqing Hou, and
Prof. Hongyang Zhang for proofreading, Yikang Li, Qiuhao Wang, Zhoutong Wu,
Tong Yang, and Pengyun Yue for carefully checking all the proofs (in particular,
Qiuhao Wang gave a much simpler proof for Lemma 3.16) and Celine Chang from
Springer for helping the publication of the book. The authors are truly honored to
have forewords written by Prof. Zongben Xu and Prof. Zhi-Quan Luo. This book
is supported by National Natural Science Foundation of China under Grant Nos.
61625301 and 61731018.

XV

About the Book

This book introduces the basic concepts of ADMM and its latest progress. Specifi-
cally, it introduces various ADMMs under different scenarios: convex and determin-
istic ADMM (Chap. 3), nonconvex and deterministic ADMM (Chap. 4), stochastic
ADMM (Chap.5), and distributed ADMM (Chap.6). To make the book self-
contained, it gives the detailed proofs of the convergence rates for most of the
introduced algorithms.

This book serves as a useful reference to the recent advances in ADMM. It is
appropriate for graduate students and researchers who are interested in optimization
or practitioners who seek a powerful tool for optimization.

XVvii

Contents

1 Introduction

and Its Acceleration

1.1 Examples of Constrained Optimization Problems
in Machine Learningcccoviiiiiiiiiiiiiiiiiii e,
1.2 Sketch of Representative Works on ADMM ...,
Referencesoouuuiii
2 Derivations of ADMM ...ttt
2.1 Lagrangian Viewpoint of ADMMccoiiiiiiiiiiiiiiinen...
2.1.1 Dual ASCENt ...oouviiiiii i
2.1.2 Augmented Lagrangian Method....................ooooeet.
2.1.3 Alternating Direction Method of Multipliers
2.1.4 Relation to the Split Bregman Method
2.2 Operator Splitting Viewpoint of ADMM.............cooeviiiiiie...
2.2.1 Douglas—Rachford splitting..........cc.ccooviveeeiiiiinee...
222 FromDRSto ADMM.......coiiiiiiiiiiiiiiiiiiiie
Referencesoouuiii
3 ADMM for Deterministic and Convex Optimization
3.1 Original ADMM ...
3.1.1 Convergence AnalySiSoooviiiiiiiiiiiiiiiiniinnn...
3.1.2 Sublinear Convergence Rate.....................coiiiet.
3.1.3 Linear ConvergenceRate ...t
32 Bregman ADMMo
3.2.1 Sublinear CONVErgencec.eeeeeiiiieeeeennnnnnen...
3.2.2 Linear CONVEIZeNCEuveetinnninieeeeeiiieeeeeennaeenn.
3.3 Accelerated Linearized ADMM ...,
3.3.1 Sublinear Convergence Rate.....................coooiioet.
3.3.2 Linear ConvergenceRate ...t
3.4 Special Case: Linearized Augmented Lagrangian Method

11
11
11
12
16
17
19
19
21
22

25
25
25
31
35
40
44
51
54
55
74

82

Xix

XX

Contents

3.5 Multi-block ADMM ... oo 86
3.5.1 Gaussian Back Substitution.................cooeeiiiiiiiin.... 87
3.5.2 Prediction-CorreCtionooveeeieiiiiiiiaeeeaiiiaaaanns 91
3.5.3 Linearized ADMM with Parallel Splitting 94
3.5.4 Combining the Serial and the Parallel Update Orders........ 96
3.6 Variational Inequality Perspectiveccooiviiiiiiiiiiiiie... 97
3.6.1 Unified Framework in Variational Inequality 99
3.6.2 Unified Convergence Rate AnalysiS..........ccccovviuvunee... 102
3.7 The Case of Nonlinear Constraintscooeeeeeiiiuiaaeeannnn. 104
R eIeNCeS ..o 109
ADMM for Nonconvex Optimizationooeeiiiin. 113
4.1 Multi-block Bregman ADMMccooiiiiiiiiiiiiiiiiiiieinas 113
4.1.1 With More Assumptions on the Objectives 119
4.2 Proximal ADMM with Exponential Averaging 123
4.3 ADMM for Multilinearly Constrained Optimization................. 135
R ereNCeS ..ot 141
ADMM for Stochastic Optimization........................oooooiiiiiin 143
5.1 Stochastic ADMM..... ...ttt 144
5.2 Variance Reduction................cooiiiiiiiiiiiiiiii i, 152
5.3 Momentum Acceleration............oooveiiiiiiiiiineeeeiiiiiaeaaaaa, 163
5.4 Nonconvex Stochastic ADMM and Its Acceleration 191
5.4.1 Nonconvex SADMMciiiiiiiiiiiiiiiii it 191
5.4.2 SPIDER Acceleration...........cooeeiiiiiiiiieeeeniiiiiiaaanns 196
R ereNCeS ..t 205
ADMM for Distributed Optimization 207
6.1 Centralized Optimizationooiiiiiiiiiiiniiiiiinnnnnnnnn... 208
6.1.1 ADMM ...ttt 208
6.1.2 Linearized ADMMottt it 210
6.1.3 Accelerated Linearized ADMMcocoiiiiinn.. . 212
6.2 Decentralized Optimizationcooeeeiiiiiiiiieeenniinne... 213
6.2.1 ADMM ...ttt 214
6.2.2 Linearized ADMMottt 220
6.2.3 Accelerated Linearized ADMMcooiiiiin.. . 222
6.3 Asynchronous Distributed ADMM ..., 223
6.3.1 CONVEIZENCE ...t i 224
6.3.2 Linear ConvergenceRate ..., 230
6.4 Nonconvex Distributed ADMMoiiiiiiiiiiiiiiiiien. 238
6.5 ADMM with Generally Linear Constraints 238
Referencescoooviii e 239
Practical Issues and Conclusions..................cooeviiiiiinnnn. 241
7.1 Practical ISSUESoiiiniiiii i e 241
7.1.1 Stopping Criterionoooeieeiiiiiiiiiiiieeiniinnen... 241

7.1.2 Choice of Penalty Parametersoooet. 242

Contents XXi

7.1.3 Avoiding Excessive Auxiliary Variables 244

7.1.4 Solving Subproblems Inexactlyccoeviiio... 245

7.1.5 Other Considerations............oouuveeeeiiiiiieeeennnnnneen.. 245

7.2 CONCIUSIONS .ottt ettt e e 246
RefEIeNCeS ..ottt 246
A Mathematical Preliminaries 249
AT NOALIONS ..o e ettt 249
A2 Algebraand Probabilityccoooiiiiiiiiiii 250
A3 ConveX ANALYSISueetetie e e 252
A4 Nonconvex AnalysiS......oovuuiiieieiiiii e 258
RefEIeNCeS . et 259

Acronyms

AAAI
Acc-SADMM

ADMM
ALM
DRS
KKT
LADMM
MISO
RPCA
SADMM
SAG
SDCA
SGD
SPIDER
SVD
SVRG
VR

Association for the Advancement of Artificial Intelligence

Accelerated Stochastic Alternating Direction Method of
Multipliers

Alternating Direction Method of Multipliers
Augmented Lagrangian Method

Douglas-Rachford Splitting

Karush-Kuhn-Tucker

Linearized Alternating Direction Method of Multipliers
Minimization by Incremental Surrogate Optimization
Robust Principal Component Analysis

Stochastic Alternating Direction Method of Multipliers
Stochastic Average Gradient

Stochastic Dual Coordinate Ascent

Stochastic Gradient Descent

Stochastic Path-Integrated Differential EstimatoR
Singular Value Decomposition

Stochastic Variance Reduced Gradient

Variance Reduction

XXiii

Chapter 1)
Introduction Check for

Optimization plays a central role in fields that use mathematical models, such as
signal processing and machine learning [14]. The celebrated formula [14]:

machine learning = representation + optimization + evaluation,

proposed by P. Domingos, an AAAI Fellow and a Professor at University of
Washington, dictates the importance of optimization in machine learning.

Besides the wide applications of unconstrained optimization (see [42] for
example), a lot of mathematical models can also be formulated or reformulated as
constrained optimization. The constraints either add more prior information to the
mathematical models (e.g., nonnegativity and boundedness) or are introduced when
reformulating the original optimization problem (e.g., using auxiliary variables) so
that the reformulated problem can be solved more easily. The alternating direction
method of multipliers (ADMM) is a powerful tool for solving constrained problems,
ranging from the classic linearly constrained problems with separable objectives
to general problems with nonlinear and inequality constraints. Due to our limited
knowledge, we focus on ADMMs studied in the machine learning community.

1.1 Examples of Constrained Optimization Problems
in Machine Learning

We provide three representative examples of constrained optimization in machine
learning, all of which can be solved by ADMM. The first one is the famous robust
principal component analysis (RPCA) model [8], the second one is the widely used
consensus problem in distributed optimization, and the third one is the non-negative
matrix completion [63].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1
Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9840-8_1&domain=pdf
https://doi.org/10.1007/978-981-16-9840-8_1

2 1 Introduction

The RPCA model [8] decomposes an observation matrix into a low-rank matrix
and a sparse matrix. It is cast as the following linearly constrained convex problem
with separable objectives:

??WMH+HEM% st. X+Z=M, (1.1)

where || - ||« is the nuclear norm, defined as the sum of singular values, and || - ||
is the £1 norm,! defined as the sum of absolute values of the entries, which are the
convex relaxations of the rank function and the £y (pseudo-)norm, respectively. In
practice, the observation matrix M may be corrupted by noise. Accordingly, people
often solve the following model instead:

. 1% 2)
X Z Y ,
Jmin (Il + 71 h+ 21y
st. X+Z+Y=M, (1.2)

where we use || - || to denote the Frobenius norm of a matrix and the Euclidean norm
of a vector in a unified way. In real applications, the observation matrix M may
be huge and it is unrealistic to compute the singular value decomposition (SVD,
Definition A.1) of a huge matrix. To reduce the computational cost, people often
factorize the low-rank matrix X as a product of two much smaller matrices and
solve the following model instead:

1 2
i U2+ IV 2) zZ y|2 |,
Jmin_ [2 (oI + 1vIR) + iz + i
st. UVI4+Z+Y=M, (1.3)
due to |X]lx = mingyr_x é (||U||2 + ||V||2). On the other hand, sometimes we

want to use the rank function and the £¢ norm directly, rather than their convex
relaxations, then we have the following nonconvex model:

. w 2)
k(X Z Y|“),
gmin (rank(X) + 7 Zllo +) Y]
st. X+7Z+Y =M. (1.4)
Models (1.1) and (1.2) are convex problems with two blocks and three blocks of

variables, respectively, while (1.3) and (1.4) are nonconvex ones. All of them can be
solved by particular forms of ADMM with convergence guarantee.

! Please see the table in Sect. A.1 for commonly used notations in this book.

1.1 Examples of Constrained Optimization Problems in Machine Learning 3

The second example is the consensus problem [7], where we want to solve the
following general finite-sum problem in a distributed environment:

min £ (x) =) fi (%), (L5)

i=1

in which m agents form a connected and undirected network and the local function
fi is only accessible by agent i due to storage or privacy reasons. When the network
has a central (or called master) agent, we can reformulate the above problem as the
following linearly constrained one:

m

min i(X;), s.t. X;=1z,1¢€ [m],

{x,-;,zz;f’() ; [m]
1=

where the central agent is responsible for updating z while each worker agent is
responsible for updating x;. When the network is decentralized, we cannot use the
constraints X; = z since there is no central node to compute z. Instead, we associate
each edge in the network with a variable z;; if it connects agents i and j, and
reformulate Problem (1.5) as follows:

min i Ji(xi),

{xi}.{zij} P
sit. X; =1z, X; =12, Vi, j) € Ewithi < j,

where & is the set of edges. Both the above two reformulations can be solved by
ADMM efficiently (see Sects. 6.1 and 6.2).

The third example is the non-negative low-rank matrix completion problem [63],
which is a useful model for dimensionality reduction, text mining, collaborative
filtering, and clustering. It is originally formulated as:

1
min (||X||* + |Ib— PQ(X)HZ) , sit. X>0, (1.6)
X 2

where b is the observed data in the matrix X contaminated by noise and Pgq is a
linear mapping that selects the entries whose indices are in 2. The above problem
is not easy to solve directly, so we reformulate it as the following one:

1 llell
2u
st. b=Pq(Y)+e X=Y, (1.7)

min <||X|I* +
XY

s Xy,

2+ XYzo(Y)> ,

4 1 Introduction

by introducing auxiliary variables Y and e, where y is the indicator function:
xy>0(Y) =0if Y > 0, and oo otherwise.

After reformulation, (1.7) can be easily solved by multi-block ADMM.

1.2 Sketch of Representative Works on ADMM

ADMM was originally proposed by Glowinski and Marrocco [22] and Gabay and
Mercier [19] in the mid-1970s. ADMM did not catch much attention in the machine
learning community until people started using it to solve low-rank problems around
2010, such as RPCA [8] and low-rank representation [43], when sparse and low-
rank learning was the hottest research topic of machine learning at that time. Early
practice includes [8, 39, 40, 43, 56]. The tutorial-like booklet by Boyd et al. [7] also
greatly contributed to the popularity of ADMM in the machine learning community.

The convergence of ADMM for convex problems was proved by many
researchers, including Gabay [18] and Eckstein and Bertsekas [15]. However,
the convergence rate remains an open problem until He and Yuan [26] proved
the O(1/k) rate in the ergodic sense (i.e., considering an average of the past
iterates) in 2012 via variational inequality, where k is the number of iterations.
To make the subproblems easily computable, many authors extended ADMM to
its linearized variants by linearizing the augmented term, as well as the smooth
objectives. See [24, 40, 52, 58] for example. Some researchers (see [48] and [37] for
example) combined linearized ADMM with Nesterov’s acceleration. However, the
convergence rate is not improved for generally convex problems. It is still O(1/k).
When smoothness and strong convexity is assumed, faster convergence rates can be
proved. Compared to the ergodic convergence rate, we may be more interested in the
non-ergodic (i.e., considering the latest iterate) convergence rate. It was first studied
by He and Yuan [29] in 2015, and then extended by Davis and Yin [12] in 2016.
They proved the O (1/+/k) convergence rate for generally convex problems, and the
latter further proved that this rate is tight. ADMM was originally designed to solve
two-block problems, i.e., the variables are grouped into two blocks and variables in
the same block are updated simultaneously, but many problems in machine learning
are modeled with multi-blocks. However, the convergence of the direct extension
of two-block ADMM for multi-block convex programming is unknown, although it
appeared to be effective on some problems, e.g., [56]. Later, Chen et al. [11] gave
a counter-example to show that such a direct extension of two-block ADMM is not
necessarily convergent for multi-block convex programming. Thus, to guarantee the
convergence, some modifications have to be made, such as adding the Gaussian back

1.2 Sketch of Representative Works on ADMM 5

substitution [25] or the contractive step [27] or using the parallel splitting instead,
e.g., [28,41,44]. ADMM was also originally designed to solve problems with linear
equality constraints. For broader applications, some researchers have extended it to
general constraints, including linear equality constraint, linear inequality constraint,
as well as nonlinear constraint. See [21] for example. Learning-based ADMM is a
recent interesting topic by treating the iterative algorithm as a structured deep neural
network, and relaxing the parameters of ADMM to be learnable such that they are
optimal to specific data or problems. See [62, 65] for example, but learning-based
ADMM is rather immature and only [62] has some theoretical guarantees.

Nonconvex ADMM, as a new topic of interest, has been studied by a lot of
researchers (for example, see [5, 30, 33, 36, 60]), especially the proximal ADMM
with Bregman distance [59]. Zhang and Luo [67] proposed another proximal
ADMM, which uses the Bregman distance from an exponential averaging of all
history iterates, rather than just the previous one. The methods in the above
references are designed to solve problems with nonconvex objectives and linear
constraint. On the other hand, Gao et al. [20] proposed a nonconvex ADMM to solve
problems with multilinear constraints, which has broad applications in machine
learning, such as non-negative matrix factorization [6, 23], RPCA [8], and the
training of neural networks [38, 57]. The result on problems with general nonlinear
and nonconvex constraint is much scarcer, and the previous studies mainly focus on
the augmented Lagrangian method. See [50] and the references therein.

In machine learning and statistical models, the learning objectives are often in the
form of an expectation over a large number of individual functions, each of which is
associated with a datum. Under this regime, modern algorithms can be designed in
a stochastic fashion, which per-iteratively only randomly access one (or several)
individual function(s) serving as an estimator of the full counterpart, thereby
reducing the overall computation costs. The first works for stochastic ADMM may
come from [47, 55], which achieved an O(1/ v k) rate in the convex setting. Azadi
et al. [2] further combined it with Nesterov’s acceleration and obtained a similar
convergence rate. On a different research line, for unconstrained problems where
the objectives are of an expectation over a finite number of individual functions, it
was known that a useful technique termed Variance Reduction (VR) can control
the variance of the stochastic gradient and provably accelerate the convergence
rate when the number of individual functions is not too large (for example, see
[13, 34, 51]). This idea has been successfully introduced into stochastic ADMM
in [66, 68], and the resultant algorithms achieved a rate of O (1/k) in the ergodic
sense. Later, Fang et al. [16] and Liu et al. [45] fused this technique with Nesterov’s
acceleration and achieved faster rates by order under suitable conditions. In the
nonconvex setting, stochastic ADMM was studied in [31]. Recently, Huang et al.
[32] and Bian et al. [4] considered acceleration by applying a new powerful VR
technique called Stochastic Path-Integrated Differential Estimator (SPIDER) [17]

2 In this book, we adopt a more general sense of ADMM. Namely, the blocks of variables need not
be updated sequentially.

6 1 Introduction

in this setting. Note here, faster rates were achievable no matter the number of
individual functions.

As for distributed optimization, it has a long history to use ADMM to solve
centralized consensus problems, which may date back to 1980s [3]. A detailed
introduction can be found in the popular review [7]. For the decentralized consensus
problems, Shi et al. [53] proved that ADMM is equivalent to the linearized
augmented Lagrangian method. Generally speaking, ADMM is not the first choice
for decentralized optimization and people often prefer the primal-dual method [35],
the linearized augmented Lagrangian method [1, 54], and some other methods like
gradient tracking [46, 49, 64]. Asynchrony is an interesting topic in practical dis-
tributed optimization. Wei and Ozdaglar [61] modeled asynchrony by randomized
ADMM, which activates only a subset of agents at each iteration. Chang et al. [9, 10]
gave the convergence and convergence rate analysis on the fully asynchronous
ADMM for centralized consensus optimization. Both [61] and [9, 10] focused
on centralized optimization, and the literature on the asynchronous decentralized
optimization is scarcer.

References

1. S.A. Alghunaim, E.K. Ryu, K. Yuan, A.H. Sayed, Decentralized proximal gradient algorithms
with linear convergence rates (2020). ArXiv:1909.06479

2. S. Azadi, S. Sra, Towards an optimal stochastic alternating direction method of multipliers, in
International Conference on Machine Learning (2014), pp. 620-628

3. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods
(Prentice Hall, Hoboken, 1989)

4. F. Bian, J. Liang, X. Zhang, A stochastic alternating direction method of multipliers for non-
smooth and non-convex optimization. Inverse Prob. 37(7), (2021)

5. R.I. Bot, D.-K. Nguyen, The proximal alternating direction method of multipliers in the
nonconvex setting: convergence analysis and rates. Math. Oper. Res. 45(2), 682-712 (2020)

6. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

7. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),
1-122 (2011)

8. E.J. Candes, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM 58(3),
1-37 (2011)

9. T.-H. Chang, M. Hong, X. Wang, Asynchronous distributed ADMM for large-scale opti-
mization — part I: algorithm and convergence analysis. IEEE Trans. Signal Process. 64(12),
3118-3130 (2016)

10. T.-H. Chang, W.-C. Liao, M. Hong, X. Wang, Asynchronous distributed ADMM for large-
scale optimization - part II: linear convergence analysis and numerical performance. IEEE
Trans. Signal Process. 64(12), 3131-3144 (2016)

11. C. Chen, B. He, Y. Ye, X. Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent. Math. Program. 155(1-2), 57-79 (2016)

References 7

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

32.

33.

34.

D. Davis, W. Yin, Convergence rate analysis of several splitting schemes, in Splitting Methods
in Communication, Imaging, Science, and Engineering (Springer, Berlin, 2016), pp. 115-163
A. Defazio, F. Bach, S. Lacoste-Julien, SAGA: a fast incremental gradient method with support
for non-strongly convex composite objectives, in Advances in Neural Information Processing
Systems (2014), pp. 1646-1654

P.M. Domingos, A few useful things to know about machine learning. Commun. ACM 55(10),
78-87 (2012)

J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Math. Program. 55(1), 293-318 (1992)

C. Fang, F. Cheng, Z. Lin, Faster and non-ergodic O(1/k) stochastic alternating direction
method of multipliers, in Advances in Neural Information Processing Systems (2017),
pp. 4476-4485

C. Fang, CJ. Li, Z. Lin, T. Zhang, SPIDER: near-optimal non-convex optimization via
stochastic path-integrated differential estimator, in Advances in Neural Information Processing
Systems (2018), pp. 689-699

D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented
Lagrangian Methods: Applications to the Solution of Boundary-Value Problems (1983)

D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via
finite element approximations. Comput. Math. 2(1), 17-40 (1976)

W. Gao, D. Goldfarb, EE. Curtis, ADMM for multiaffine constrained optimization. Optim.
Methods Softw. 35(2), 257-303 (2020)

J. Giesen, S. Laue, Distributed convex optimization with many convex constraints (2018)
ArXiv:1610.02967

R. Glowinski, A. Marrocco, Sur I’approximation par éléments finis d’ordre un, et la résolution,
par pénalisation-dualité d’une classe de problemes de Dirichlet non linéaires. Rev. fr. autom.
inform. rech. opér., Anal. numér. 9(R2), 41-76 (1975)

D. Hajinezhad, T.-H. Chang, X. Wang, Q. Shi, M. Hong, Nonnegative matrix factorization
using ADMM: algorithm and convergence analysis, in IEEE International Conference on
Acoustics, Speech, and Signal Processing (2016), pp. 4742-4746

B. He, L.-Z. Liao, D. Han, H. Yang, A new inexact alternating directions method for monotone
variational inequalities. Math. Program. 92(1), 103—118 (2002)

B. He, M. Tao, X. Yuan, Alternating direction method with Gaussian back substitution for
separable convex programming. SIAM J. Optim. 22(2), 313-340 (2012)

B. He, X. Yuan, On the O (1/t) convergence rate of the Douglas-Rachford alternating direction
method. SIAM J. Numer. Anal. 50(2), 700-709 (2012)

B. He, M. Tao, M.-H. Xu, X.-M. Yuan, Alternating directions based contraction method
for generally separable linearly constrained convex programming problems. Optimization 62,
573-596 (2013)

B. He, M. Tao, X. Yuan, A splitting method for separable convex programming. IMA J. Numer.
Anal. 35(1), 394-426 (2015)

B. He, X. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating directions
method of multipliers. Numer. Math. 130(3), 567-577 (2015)

M. Hong, Z.-Q. Luo, M. Razaviyayn, Convergence analysis of alternating direction method of
multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337-364 (2016)

. F. Huang, S. Chen, Mini-batch stochastic ADMMs for nonconvex nonsmooth optimization

(2018). ArXiv:1802.03284

F. Huang, S. Chen, H. Huang, Faster stochastic alternating direction method of multipliers for
nonconvex optimization, in International Conference on Machine Learning (2019), pp. 2839—
2848

B. Jiang, T. Lin, S. Ma, S. Zhang, Structured nonconvex and nonsmooth optimization:
algorithms and iteration complexity analysis. Comput. Optim. Appl. 72(1), 115-157 (2019)
R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, in Advances in Neural Information Processing Systems (2013), pp. 315-323

35

36.

37.

38.

39

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

SI.

52.

53.

54.

55.

56.

57.

1 Introduction

. G. Lan, S. Lee, Y. Zhou, Communication-efficient algorithms for decentralized and stochastic
optimization. Math. Program. 180(1), 237-284 (2020)

G. Li, T.K. Pong, Global convergence of splitting methods for nonconvex composite optimiza-
tion. SIAM J. Optim. 25(4), 2434-2460 (2015)

H. Li, Z. Lin, Accelerated alternating direction method of multipliers: an optimal O(1/K)
nonergodic analysis. J. Sci. Comput. 79(2), 671-699 (2019)

J. Li, M. Xiao, C. Fang, Y. Dai, C. Xu, Z. Lin, Training deep neural networks by lifted proximal
operator machines. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3334-3348 (2022)

. Z. Lin, M. Chen, Y. Ma, The augmented Lagrange multiplier method for exact recovery of
corrupted low-rank matrices (2010). ArXiv:1009.5055

Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive penalty for low-
rank representation, in Advances in Neural Information Processing Systems (2011), pp. 612—
620

Z. Lin, R. Liu, H. Li, Linearized alternating direction method with parallel splitting and
adaptive penalty for separable convex programs in machine learning. Mach. Learn. 99(2), 287—
325 (2015)

Z.Lin, H. Li, C. Fang, Accelerated Optimization in Machine Learning: First-Order Algorithms
(Springer, Berlin, 2020)

G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in Interna-
tional Conference on Machine Learning (2010), pp. 663-670

R. Liu, Z. Lin, Z. Su, Linearized alternating direction method with parallel splitting and
adaptive penalty for separable convex programs in machine learning, in Asian Conference on
Machine Learning (2013), pp. 116-132

Y. Liu, F. Shang, H. Liu, L. Kong, L. Jiao, Z. Lin, Accelerated variance reduction stochastic
ADMM for large-scale machine learning. IEEE Trans. Pattern Anal. Mach. Intell. 43(12),
4242-4255 (2021)

A. Nedi¢, A. Olshevsky, W. Shi, Achieving geometric convergence for distributed optimization
over time-varying graphs. SIAM J. Optim. 27(4), 2597-2633 (2017)

H. Ouyang, N. He, L. Tran, A. Gray, Stochastic alternating direction method of multipliers, in
International Conference on Machine Learning, pp. 80-88 (2013)

Y. Ouyang, Y. Chen, G. Lan, E. Pasiliao Jr., An accelerated linearized alternating direction
method of multipliers. SITAM J. Imaging Sci. 8(1), 644-681 (2015)

G. Qu, N. Li, Harnessing smoothness to accelerate distributed optimization. IEEE Trans.
Control Netw. 5(3), 1245-1260 (2018)

M.E. Sahin, A. Eftekhari, A. Alacaoglu, FL. Gémez, V. Cevher, An inexact augmented
Lagrangian framework for nonconvex optimization with nonlinear constraints, in Advances
in Neural Information Processing Systems (2019), pp. 13943—-13955

M. Schmidt, N. Le Roux, F. Bach, Minimizing finite sums with the stochastic average gradient.
Math. Program. 162(1-2), 83—112 (2017)

R. Shefi, M. Teboulle, Rate of convergence analysis of decomposition methods based on the
proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269-297
(2014)

W. Shi, Q. Ling, K. Yuan, G. Wu, W. Yin, On the linear convergence of the ADMM in
decentralized consensus optimization. IEEE Trans. Signal Process. 62(7), 1750-1761 (2014)
W. Shi, Q. Ling, G. Wu, W. Yin, EXTRA: an exact first-order algorithm for decentralized
consensus optimization. SIAM J. Optim. 25(2), 944-966 (2015)

T. Suzuki, Stochastic dual coordinate ascent with alternating direction method of multipliers,
in International Conference on Machine Learning (2014), pp. 736-744

M. Tao, X. Yuan, Recovering low-rank and sparse components of matrices from incomplete
and noisy observations. STAM J. Optim. 21(5), 57-81 (2011)

G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, T. Goldstein, Training neural networks
without gradients: a scalable ADMM approach, in International Conference on Machine
Learning (2016), pp. 2722-2731

References 9

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

X. Wang, X. Yuan, The linearized alternating direction method for Dantzig selector. SIAM J.
Sci. Comput. 34(5), 2792-2811 (2012)

F. Wang, W. Cao, Z. Xu, Convergence of multi-block Bregman ADMM for nonconvex
composite problems. Sci. China Inf. Sci. 61(12), 1-12 (2018)

Y. Wang, W. Yin, J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimiza-
tion. J. Sci. Comput. 78(1), 29-63 (2020)

E. Wei, A. Ozdaglar, On the O(1/k) convergence of asynchronous distributed alternating
direction method of multipliers, in IEEE Global Conference on Signal and Information
Processing (2013), pp. 551-554

X. Xie, J. Wu, G. Liu, Z. Zhong, Z. Lin, Differentiable linearized ADMM, in International
Conference on Machine Learning (2019), pp. 6902-6911

Y. Xu, W. Yin, Z. Wen, Y. Zhang, An alternating direction algorithm for matrix completion
with nonnegative factors. Front. Math. China 7(2), 365-384 (2012)

J. Xu, S. Zhu, Y. C. Soh, L. Xie, Augmented distributed gradient methods for multi-agent
optimization under uncoordinated constant stepsizes, in IEEE Conference on Decision and
Control (CDC) (2015), pp. 2055-2060

Y. Yang, J. Sun, H. Li, Z. Xu, Deep ADMM-Net for compressive sensing MRI, in Advances in
Neural Information Processing Systems (2016), pp. 10-18

S. Zheng, J. Kwok, Fast-and-light stochastic ADMM, in International Joint Conference on
Artificial Intelligence (2016), pp. 2407-2613

J. Zhang, Z.-Q. Luo, A proximal alternating direction method of multiplier for linearly
constrained nonconvex minimization. SIAM J. Optim. 30(3), 2272-2302 (2020)

W. Zhong, J. Kwok, Fast stochastic alternating direction method of multipliers, in International
Conference on Machine Learning (2014), pp. 46-54

Chapter 2)
Derivations of ADMM Chack for

In this chapter, we introduce how to derive ADMM from the Lagrangian viewpoint
and the operator splitting viewpoint, respectively. Especially, the former one
provides some useful background and motivation.

2.1 Lagrangian Viewpoint of ADMM

We first briefly introduce two methods based on the Lagrangian function and then
give the ADMM.

2.1.1 Dual Ascent

Consider the following linearly constrained convex problem:

min f(x), st Ax=b, @2.1)

where f(x) is proper (Definition A.25), closed (Definition A.12) and convex
(Definition A.4).! We can solve it by dual ascent. Introduce the Lagrangian function
(Definition A.17)

L(x,A) = f(x) + (A, Ax —b),

! As we are not interested in pathological functions, for brevity in this book we do not emphasize
properness and closedness when a function is convex, especially the former.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 11
Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9840-8_2&domain=pdf
https://doi.org/10.1007/978-981-16-9840-8_2

12 2 Derivations of ADMM

where A is the Lagrange multiplier. The dual function (Definition A.18) is
dd) = mxin L(x, 1)

= min (f(x) + (A, Ax — b))

= — max (—f(x) - <ATx, x>) — (A, b)
= —f*(=ATA) — (A, b), (2.2)

where f* is the conjugate function (Definition A.16) of f. d(A) is concave
(Definition A.5) and the domain of d(X) is D = {A|d(A) > —oo}. The dual problem
(Definition A.19) is

maxd(d). (2.3)
reD

Denote A* as the optimal solution of the dual problem. We can recover the optimal
solution of the primal problem (2.1) as

x* = argmin L(x, 1),
X

as the strong duality (Proposition A.13) holds for Problem (2.1). When f is
strictly convex (Definition A.6), due to Danskin’s theorem (Theorem A.l1) and
Proposition A.7, we know that d(X) is differentiable and Vd(A¥) = AxFt! — b,
where x**! is the minimizer of L(x, Ak). So we can use the gradient ascent method
to solve the dual problem (2.3), which consists of the following iterations:

xT1 = argmin L(x, %), (2.4)
X
A =2k ¢ g AxM T — b, (2.5)

where o is the step size which needs to be chosen appropriately. The first step is
a minimization step in the primal space, while the second step is the update in the
dual space.

2.1.2 Augmented Lagrangian Method

The disadvantage of the dual ascent method is that to make the dual function
differentiable, we require f to be strictly convex. Otherwise, (2.5) is a subgradient
ascent of the dual function, and the resulted dual subgradient ascent converges much
slower. Even worse, the subproblem (2.4) may not have a solution, e.g., when f is an
affine function of x. To address these issues, we can use the augmented Lagrangian

2.1 Lagrangian Viewpoint of ADMM 13

method [6]. Introduce the augmented Lagrangian function

Lg(x,A) = f(x)+ (A, Ax —b) + 'g |Ax — b|?,

where B > 0 is called the penalty parameter. The associated dual function is

dg(L) = min Lg(x, X).
X

For any A, we have d(L) < dg(A). Moreover, for any A, we have dg(A) < f(x*).
Since d(A*) = f(x*), we know d(A*) = dg(A*) = f(x*). Thus introducing the
augmented term g |Ax—b]|? does not chan ge the solution. Another way to draw this
conclusion immediately is to regard Lg(x, L) as the Lagrangian function associated
with the following problem:

min (f(x) + g |Ax — b||2) , sit. Ax=h.

However, using the augmented Lagrangian function brings great benefits: for
dg (L) to be differentiable we only require f to be convex, rather than being strictly
convex, as shown by the following lemma.

Lemma 2.1 Let D()) denote the optimal solution set of miny Lg(X,). Then AX is
invariant over D(X). Moreover, dg (L) is differentiable and

Vdg(L) = Ax(A) — b,

where x(A) € D(A) is any minimizer of Lg(x, X). We also have that dg() is é
smooth (Definition A.9), i.e.,

1
IVdg (k) — Vdg)Il < 8 A =21l

Proof Suppose that there exist x and x' € D(L) with Ax # Ax’. Then we have
dg(\) = Lg(x, L) = Lg(x', X).
Due to the convexity of Lg(x, A) with respect to x, D(L) must be convex, implying

x= (x+x)/2 € DQ).

14 2 Derivations of ADMM

By the convexity of f and strict convexity of | - ||2, we have

1 1
dpd) = JLp(x2) + ,Lp(x3)

B

5 |Ax — b||> = Lg(x, X).

> f(x) + (Ax — b, A) +

This contradicts the definition dg(A) = miny Lg(x, X). Thus Ax is invariant over
D(L). So by Danskin’s theorem (Theorem A.1), ddg(u) is a singleton {Ax(L) — b},
where x(1) € D(L). By Proposition A.7, we know that dg() is differentiable and
Vdg(L) = Ax(A) —b.
Let

x = argmin Lg(x,A) and X = argminLg(x,).
X X

Then we have

0caf(x)+ATx + BAT (Ax — b),
0cdfx)+ATL + BAT (AX — b).

From the monotonicity of df (Proposition A.10), we have
(—(ATx + BAT(Ax — b)) + (ATA + BAT (AX — b)), x — x/> >0

= (A—1,Ax—AX)+ BlAx— AX|? <0
= BllAx — AX'|| < []A — 1]

So we have
1
IVdg(X) — Vdg(A)|| = |Ax — AX'|| < 8 A — A"

O

Applying dual ascent to dg(L), we have the following augmented Lagrangian
method:

X = argmin Lg(x, A5), (2.6)
X

A =k 4 gAxMt! —). (2.7)

2.1 Lagrangian Viewpoint of ADMM 15

Note that the step size is chosen as . One of the reasons will be shown immediately.
Discussions on other choices of step sizes can be found in Sect. 7.1.2.

The augmented Lagrangian method can also be derived from the dual problem.
Since the dual function of Problem (2.1) is (2.2), the dual problem is

min (FH(=ATL) + (1, b)) . (2.8)
)
We may use the proximal point method to solve (2.8):

A1 = argmin (f*(—ATx) + (A, b) + zlﬂ A — xk||2)) (2.9)
A

The optimality condition of (2.9) is
0c —Adf* (—AT)J‘“) tb+ ; (xk“ - xk) .
So there exists
X+ e gf (—AT)J‘“), (2.10)
such that
0= —Ax*t! 4 b+ 1 <Xk+1 _lk)’
B

which gives

M kg (Ax"“ - b) : 2.11)

On the other hand, (2.10) and Point 5 of Proposition A.11 give —ATA¥*! ¢
af (XM, ie.,

0 c 9f (x*t1y 4 ATAkH!

— af(xk+1) _I_AT I:)"k +ﬂ(AXk+1 _ b)] ,
which gives
1 = argmin (f(x) + (x", Ax> + g IAx — b||2> : 2.12)
X

supposing that the solution of (2.12) is unique. (2.12) and (2.11) constitute the
augmented Lagrangian method.

16 2 Derivations of ADMM
2.1.3 Alternating Direction Method of Multipliers

Model (2.1) covers many problems in real applications. Consider a special case of
Problem (2.1), which has the following separable structure and arises from diverse
applications in machine learning, image processing, and computer vision:

I;(liyn (fx)+g@), st Ax+By=b. (2.13)
Introduce the augmented Lagrangian function

Lg(x,y,A) = f(x) +g(y) + (Ax+By — b, 1) + ’; |Ax + By — b||°.

When we use the augmented Lagrangian method to solve Problem (2.13), we need
to solve the following subproblem

!, y**+1) = argmin (f(x) tey) + <Ax 4By —b, xk>
X,y

+§||Ax—|—By—b||2), (2.14)

which is minimized jointly with respect to x and y. Sometimes, it is much simpler
when we solve (2.14) for x and y separately, which motivates the ADMM [3, 4].
Different from the augmented Lagrangian method, ADMM updates x and y in
an alternating (or called sequential) fashion. ADMM consists of the following
iterations:

**+1 = aremin <f(x) + (") + (x", Ax + By* — b>
X

+§|IAx+Byk —b||2), (2.15a)

y**t! = argmin (f(xk“) +g(y)+ <Xk, Ax*! 4 By — b>
y

+§ ||AXk+l +By — b||2> , (2.15b)
AL 0k 4 gAXKT! 4 Byft! —). (2.15¢)

ADMM is superior to the augmented Lagrangian method when the x and y
subproblems, (2.15a) and (2.15b), can be more efficiently solved than the (x,y)
subproblem in (2.14). We present ADMM in Algorithm 2.1 for the convenience of
reference.

2.1 Lagrangian Viewpoint of ADMM 17

Algorithm 2.1 Original ADMM

Initialize x°, yo, and A0,

fork=0,1,2,3,--- do
Update x¥*1, y**1 and A¥+! by (2.15a), (2.15b), and (2.15¢), respectively.
k<—k+1.

end for

2.1.4 Relation to the Split Bregman Method

The split Bregman method was proposed by Goldstein and Osher [5] and has been
widely used in image processing. Recall the Bregman distance (Definition A.15):

Dy(y.x) =¢(y) —¢(x) — (v.y — X),

where ¢ is convex but may not be differentiable and v € d¢(x). Consider
Problem (2.1) and let

1 2
h(x) = 2||AX —b[”.
We can use the following Bregman method to solve Problem (2.1):
X1 = argmin (v x,xb) + ﬁh(x)) , (2.16)
X
VL = vk — gVAFT), (2.17)

where v° € 31 (x°) N Span(AT).> From VAi(x) = AT (Ax — b) and (2.17), we know
that

vk e Span(AT), Vk > 0. (2.18)
The optimality condition of step (2.16) ensures
0 € of x*t1) — vk 4+ BVA(xFT).
Combining with step (2.17), we have

vl e arxfthy, vk >o.

1 0

2This can be realized by first choosing v~ € Span(AT), then solving X =
argming (f(x) — (V_l, x) + ﬂh(x)), and finally setting W=vyl_ ﬂVh(xO).

18 2 Derivations of ADMM

So the Bregman distance D}k (x, x¥) is well defined for all k > 0. Recall that x* is
an optimal solution of problem (2.1) if and only if Ax* = b and there exists v* such
that v* € af (x*) N Span(AT). So we only need to ensure Ax*t1 = b so that x¥t1 is
the optimal solution of problem (2.1). We know that h(x**+1) reduces to 0 from the
convergence guarantee of the Bregman method.

On the other hand, by (2.18) we know that there exists AK such that v = —ATAK.
So the above method reduces to the following iterations:

x = argmin (f(x) — <Vk, x> + ﬂh(x))

’3||Ax—b||2>,
2

=argmin (f(x) + (Xk, Ax> +
X
ATA,k+1 :ATA,k +,3Vh(Xk+1)
= A‘k-'rl :)\,k + ﬂ(Axk-'rl _ b),

which coincides with the augmented Lagrangian method given in (2.6)—(2.7). In the
last step, we assume that A is of full row rank.

Now, we apply the above Bregman method to Problem (2.13) directly, leading to
the following method:

k k
(X"“, yk“> = argmin (D}‘ x, X*) + D (v, ¥°) + Bh(x, y)) :
X,y

k+1 k
v \4
(]LI»I) = (V]i> —_ ’BVh(X]VFl,ykJrl)
2

k T
Vi A k+1 k+1
_<v’§> ,B(BT><AX + By b),

where we let

1 0 9 0 AT
h(x,y) = 2||Ax—i—By—b||2 and V0= (:é) € <3£803) N Span <<BT))

. Vk AT k - k k
Letting Vé =—\pr A%, we eliminate v} and v, to get

(4 = angmin (/09 +g(9) + (ATA x)+ (BTA%,) + phix.)

= argmin (f(x) + g(y) + (Xk, Ax + By — b>
X,y

2.2 Operator Splitting Viewpoint of ADMM 19

+§||Ax+By—b||2>,
A Z kg (Axk+1 4 Byft! - b) ’

where we assume that [A, B] is of full row rank. In the first step, we can compute
x*1 and y**! through alternating updates until convergence, and the corresponding
method is called the split Bregman method [5]. When we only use one pass of
updates, that is, firstly minimize with respect to x, and then to y, the split Bregman
method coincides with ADMM.

2.2 Operator Splitting Viewpoint of ADMM

We first introduce the Douglas—Rachford splitting (DRS), a special operator splitting
method, and then derive ADMM from DRS.

2.2.1 Douglas—Rachford splitting

We say that 7" is a set-valued operator 7 : R” = R”, if it maps a point in R” to a
(possibly empty) subset of R". The inverse operator of 7~ is denoted as 7. Givena
closed and convex function f on R”, its subgradient df is a set-valued operator,
actually a maximal monotone operator (Definition A.14, Proposition A.10), and
Argmin pn f(x) = {x|0 € 0f(x)}. Define the resolvent of an operator 7~ as
J7 = (I +7)~', where T is the identity mapping. [is single-valued if 7 is
maximal monotone (Proposition A.9). When 7 = 9f and o > 0, we have

X = Jur(@ = (I +adf) ' (2)
&S zex+adf(x)

NX (af(x) + ;nx — z||2>

1
& X = Proxyf(z) = argmin (f(x) + o Ix — z||2> .

xeR”

Consider the inclusion problem

findgerr 0 € (A + B)X,

20 2 Derivations of ADMM

where A and B are both maximal monotone. Douglas—Rachford splitting [1], a
widely used operator splitting method, consists of the following steps:

v = Tas(xh), (2.19)
ut = g, a0vF — x5, (2.19b)
OISR L (2.19¢)

(2.19a2)—(2.19c) can be written as the following fixed-point iteration:
X = 7,
where

TX) =x+Jana(2Tas(X) = X) = Tan(X).

We claim that x is a fixed point of 7"if and only if 0 € (A+ B)v, where v = J,5(X).
In fact, v = J,5(X) is equivalent to

Xev+aB(v) & x—veaB(v).
On the other hand,

Xx=7TX) < v=Jena2v—-X)
& 2v—X € V4 aAV)
& vV—Xx € aAv)
< 0e (A+ B)v.
Next, we give an equivalent form of DRS. Switching v-update and u-
update, (2.19a)—(2.19¢) is equivalent to
u = Toa@v - x5,
VL g sk xk —vE),

kL _ gk gkl gk

X V.

Letting w& = v& — x¥, it is further equivalent to
= F (v + wh, (2.20a)
VA = Tog@ ! —wh, (2.20b)
WAL = wh 4y gkl (2.20¢)

2.2 Operator Splitting Viewpoint of ADMM 21
2.2.2 From DRS to ADMM

ADMM can also be derived from DRS [2] and accordingly shares the theoretical
properties of the operator splitting methods.
The dual function of Problem (2.13) is

min (f(x) + g(y) + (Ax+ By — b. 1))

__ _[AT _ _ _[gT _ _

= mfx((A A, x> f(x)) m;:lx((B A, y> g(y)) (A, b)

= —f*(-A") —g*(-B"A) — (. b).
So the dual problem of (2.13) can be written as

min (f*(—ATx) L g* (—BTA) + (A, b>) .
A
Denote
Yid) = f5(=A") +b"L and Yo (A) = g*(-B). 2.21)

We can use DRS (2.20a)—(2.20c¢) to solve Problem (2.21), which consists of the
following iterations:

u“t = Proxgy, (vF + wh),

Vi = Proxgy, (! — wh),

k+1 K+l k+1

w =wk+v u

From the optimality condition of the first step of DRS, we have
0 oy) + ;(uk+l v why
— A (—ATU Yy b+ ;(ukﬂ — vk —wh,
So there exists x¥t! € 9f*(—ATukt1), such that
0= —Ax""! + b+ 1 W+ — vk — why,

B

and by Point 5 of Proposition A.11 we have

—ATu e gt

22 2 Derivations of ADMM

Similarly, for the second step, we have
1
0 e _Bag*(_BTVk+1) + ﬂ(karl _ uk+1 + wk)
There also exists y¥*! € 8g*(—BT vk*1), such that

1 1
0 = —By**+! 4 p (VT ub L why = CByRl g gkt

B
and
BTV ¢ fgyFt.
So we have
1
0 € ag(y*") + BT vk + BB (Ax**! + Byft! —b),
and
1
0caf (x4 ATvh 4 AT (Aka -b+ ﬂwk>
= of (X1 + ATvE 4 BAT (A1 — b 4 Byb),
which further yield
X1 = argmin (f(x) + (> 'g |Ax + Byf b||2> , (2.23)
X
v**+! = argmin (g(y) n <By > g IAXT! + By — b]|) (2.24)
y

(2.23), (2.24), and (2.22) constitute ADMM, where v acts as the Lagrange
multiplier. Thus, ADMM is a special case of DRS.

References

1. J. Douglas, H. Rachford, On the numerical solution of heat conduction problems in two and
three space variables. Trans. Am. Math. Soc. 82(2),421-439 (1956)

2. D. Gabay, Applications of the method of multipliers to variational inequalities. Math. Appl. 15,
299-331 (1983)

References 23

3. D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via
finite element approximations. Comput. Math. 2(1), 17-40 (1976)

4. R. Glowinski, A. Marrocco, Sur I’approximation par éléments finis d’ordre un, et la résolution,
par pénalisation-dualité d’une classe de problemes de Dirichlet non linéaires. Rev. fr. autom.
inform. rech. opér., Anal. numér. 9(R2), 41-76 (1975)

5. T. Goldstein, S.J. Osher, The split Bregman method for ¢;-regularized problems. SIAM J.
Imaging Sci. 2(2), 323-343 (2009)

6. M.R. Hestenes, Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 302-320 (1979)

Chapter 3)
ADMM for Deterministic and Convex Chack for
Optimization

In this chapter, we focus on the theoretical convergence and convergence rates
for ADMM and its several variants for deterministic and convex optimization.
We first introduce the convergence property of the original ADMM as well as
its convergence rates, including the sublinear and the linear rates under different
assumptions. Then we extend to two variants of ADMM, the linearized ADMM and
the accelerated linearized ADMM, and give their sublinear and linear convergence
rates, respectively. At last, we focus on how to use ADMM to solve multi-
block separable problems and general problems with nonlinear (but still convex)
constraints.

3.1 Original ADMM

In this section, we focus on the convergence and the convergence rate analysis of
the original ADMM presented in Algorithm 2.1 (see Sect. 2.1.3).

3.1.1 Convergence Analysis

We first give several supporting lemmas, which are useful for both the convergence
and the convergence rates analysis, and prove the convergence at the end of this
section. The convergence of ADMM was studied in many references, e.g., [4, 5].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 25
Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9840-8_3&domain=pdf
https://doi.org/10.1007/978-981-16-9840-8_3

26 3 ADMM for Deterministic and Convex Optimization

Lemma 3.1 Suppose that f(x) and g(y) are convex. Let (x*,y*,A*) be a KKT
point (Definition A.21) of Problem (2.13), then we have

f+g) — fX) —g(y") + (A", Ax+ By — b) > 0, ¥x, y.

This lemma is actually a direct consequence of Point 1 of Proposition A.14.

Lemma 3.2 Suppose that f(x) and g(y) are convex. Let (x*,y*, A*) be a KKT
point of Problem (2.13). If

fX) +g(y) — Fx) —g(y") + (A", Ax+ By — b) < ay,
[Ax + By — b|| < a2,

then we have
=[x < f(X) + g(y) — fF(X) —g(¥*) < A [loz + 1.

The next lemma measures the optimality conditions of ADMM and describes the
KKT condition (Definition A.21) of Problem (2.13).

Lemma 3.3 For Algorithm 2.1, we have

0 c of x*1) + ATA% 4 BAT (AX*H! 4+ Byf — by, (3.1)
0 € 3g(y"™h + B A* + BT (AX*T 4 Byt —b), (32)
Akl gk = ﬂ(Ax"“ +Byk+1 —b), (3.3)
0 caf(x*)+ATA*, (3.4)
0 c dg(y*) + BTA¥, (3.5)
Ax* + By* = b, (3.6)

where (x*,y*, A*) is any KKT point of Problem (2.13).

Define two vectors:

%f(xk'i-l) — —ATA.k _ ‘BAT(AXk+1 +Byk _ b),
%g(yk-'rl) — —BTA.k _ ‘BBT(AXk+1 +Byk+l _ b)
= —B Akt (3.7)

Then we have
Vi e gf bt and Vey*t!) e agyFt). (3.8)

We further provide Lemmas 3.4-3.6.

3.1 Original ADMM 27
Lemma 3.4 For Algorithm 2.1, we have
<@g(yk+1), yhHl y> = —(\KFL ByKH —By), vy, (3.9)
and
(@f(xkﬂ)’ k1 X> + <@g(yk+1)’ yr! - y>
= <Xk+1, AxFH 4 By — Ax — By>
+ B <BykJrl — ByF, Ax* ! — Ax>, VX, y. (3.10)
Proof From the definitions of V f(x**1) and Vg(y**!) and (3.3) we have
<@f(xk+1), xk+1 _ X>
= — (ATAF 4 pAT (AN 4+ By — b, X! —x)
_ _<lk+l’ AxkH! _ Ax> +B <Byk+l _ Byk’Aka _ Ax>
and
(%g(y"“), Yo — y> =_ <x"“, Byt +! By>.

Adding them together, we have (3.10). O

Lemma 3.5 Suppose that f(x) and g(y) are convex. Then for Algorithm 2.1, we
have

(@f(XkJrl)’ <K+ X*> n (@g(ykJrl), yEH y*> T <x*’ AxETT 4 BykH! b>

1 1

S Ll L L n e W
28 28
+ ’; IBy* — By*||> — g IBy**! — By*|?

1

28 3 ADMM for Deterministic and Convex Optimization

Proof Letting (x,y, L) = (x*,y*, 1) in (3.10), adding (k*, AxFT1 4 Byk+! — b>
to both sides, and using (3.3) and (3.6), we have

(@f(xkﬂ)’ k1 X*> + (@g(ykﬂ)’ yhr! y*> + <x*’ Axkt! T+ Byt b>

_ <xk+1 0, AxkH 4 ByRH! b> +B (Byk+l _ By, AxFt1 - Ax*>

1
_ _ﬁ (lk+l A Ak lk> + (Byk+l _ Byk’ AR+ lk>
- B <By"+1 — By, By*t! — By*> G.11)
1 1 1
2B 2p 2B
B B B
+, By — By |12 — U [IBy"*! — By"|* — | By‘"! — By"|®
4 <Byk+l — By~ Akt _)‘k>, (3.12)
where = uses (A.1). On the other hand, (3.9) gives
(Veh). ¥ — v} + (15, Byt —By) = 0. (3.13)

Letting y = y* in (3.9) and y = y**! in (3.13), and adding them together, we have
(Ve) — Vo), ¥ — y¥) 4+ (A1 -2k Byt ! — Byt) = 0,

The first term of the above equality is non-negative thanks to the monotonicity of
dg. So we have

<x’<+1 _ K Bykt! Byk> <o. (3.14)

Plugging it into (3.12), we have the conclusion. O

Lemma 3.6 Suppose that f(x) and g(y) are convex. Then for Algorithm 2.1, we
have

f(Xk+l) _I_g(yk+l) _ f(X*) _ g(y*) +(k*,Axk+l +Byk+l _ b>

1 1

S R S S Ean e bl
28 28
B B
+ 1By — By"||> —) By**! — By*|
1 k+1 k2 :8 k+1 k2
— I k2 = T By ! — ByF|I%. (3.15)

28 2

3.1 Original ADMM 29
If we further assume that g(y) is u-strongly convex, then we have

FEED) + g) — F0) = g(v) + (1%, A 4 By ! —)

1 1
< IAE =R = R a2
28 28
B B i
- 2||Byk - By*|? - 5 IBy**! — By*||* — 5 Iy — v 1% (3.16)

If we further assume that g(y) is L-smooth, then we have

SO 4 g) = F&) - g(v) + (W, AXT 4 By —)

1 1

< IR =k a2
28 28
B B
+ IBy* — By*||*> — 5 IBy**! — By*||?
1
- IVe(y*) — Ve I%. (3.17)

Proof We use Lemma 3.5 to prove these conclusions. From the convexity of f(x)
and g(y) and (3.8), we have

FETD) + g) = Fx) = g(v") + (1%, A 4 By —)
% (@f(x"“), K X*> n (@g(ykﬂ)’ el y*>

+ <)~*’ Axk+1 + Byk+1 _ b>
1

1
S P S S Can e bl
28 28
B B
+ IBy* — By*||*> — 5 IBy**! — By*||?

1 p
= I —AK2 = Byt — By€) 2,
28 2
When g(y) is strongly convex, from (A.6) we will have an extra ’2‘ Iy ! — y*)1?

on the left hand side of %, thus leading to (3.16). When g(y) is L-smooth, from

(A.5) we will have an extra 21L Vg (y*t1) — Vg(y*)||? on the left hand side of %,
thus leading to (3.17). O

Now we are ready to prove the convergence of ADMM.

30 3 ADMM for Deterministic and Convex Optimization

Theorem 3.1 Suppose that f(x) and g(y) are convex. Then for Algorithm 2.1, we
have

FETY — Fx) + g6FH - g(v*) — 0,
Axk+1 + Byk+1 —b— 0’

as k — oo.

Proof From Lemma 3.1 and (3.15), we have

1 B
AL kg2 BvAt! — Bv¥|2
2/3” l +2|| y yol
1 k *12 1 k+1 *12
< A = AT = AT — AT
28 28
.3 k *112 :8 k+1 *12
+ 2||By - By"|” - 2||By —By"|I”. (3.18)
Summing overk =0, - - - , 00, we have
(1 i k2 o B ekt ky2
> 2T A 4 1By - By
k=0
1 B
<)"0_)"*2 BO—B*Z.
—2,3” Il +2|| y vl

Thus, we have
AT _2F 50 and By*t! —Byf — 0.

Moreover, from (3.18) we obtain that 21/3 Ak — a2 + gIIByk — By*||? is a non-

increasing sequence. So A% — A*||2 and By* — By*||? are bounded for all k. Then
we have that ||AX|| is also bounded for all k. Since

xk-’rl _)"k :ﬂ(AXkJrl +Byk+l _ b)

=B(AX*T! — Ax*) + B(By ! — By"),

we know that Ax¥*! 4+ By¥*! — b — 0 and Ax**! — Ax* is also bounded.
From (3.10) and the convexity of f and g, we have

SO =) + 26" — 2
< _<)‘k+1, AxKH 4 ByFt! b> + /3<Byk+1 — Byf, AxF! Ax*>

— 0.

3.1 Original ADMM 31
On the other hand, from (3.4), (3.5), and (3.6), we have

FETH —) + g8 — (v
> (_ATX*’Xk+1 _ x*> + <_BTX*’ gk y*>
— <)">k AXkJrl + Byk+1 _ b>

— 0.

Thus, we have f(x**1) — f(x*) + g(y**!) — g(y*) — 0. O

3.1.2 Sublinear Convergence Rate

In this section, we introduce the sublinear rates of ADMM for generally convex
problem (2.13), which are only based on the assumptions that both f and g are
convex.

3.1.2.1 Non-ergodic Convergence Rate

We first give the O (jK> non-ergodic convergence rate of ADMM, where K is the

number of iterations and non-ergodic means the convergence rate is measured at the
last iterate. Accordingly, ergodic means that the convergence rate is measured at the

average of previous iterates. This result was first proved in [7] and then extended in
[2]. Moreover, [2] proved that the O (\/IK) non-ergodic convergence rate of ADMM
is tight, meaning that it cannot be further improved.

Lemma 3.7 Suppose that f(x) and g(y) are convex. Then for Algorithm 2.1, we

have
28 2
< Dk f IBy* — By* 1|,
~ 28 2

Proof (3.10) gives
(V5 &% = x) + (Ve 0h), ¥~ v)

- <x", Axt + By* — Ax — By> +B (Byk —ByF! Axf — Ax>. (3.19)

32 3 ADMM for Deterministic and Convex Optimization

Letting (x,y,A) = (x*,y*,A%) in (3.10) and (x,y,A) = (xk*+1 yk+1 ak+1y i
(3.19), adding them together, and using (3.3), we have

(@f(xk+l) — ¥y, X - Xk> n <@g(yk+1) B yk>
__ (xk+1 —ak, AxFH 4 ByR ! — AxE — Byk>
iy <Byk+1 — By* — (By* — Byt), Ax**! — Axk>
1

— [Rk gk kT
B

4 (Byk+l _ Byk . (Byk _ Byk—l) ,

ALk gRyktl ok kT ﬂByk)>

1 - —
Y] L e L e A S |
p _
T, [llByk — By 1|2 — |By*+! — By¥|2

— 1By — By — (By* — By)]
4 (Byk+1 — Byf — (By¥ — ByF 1), Ak _ak —ak — xk71)>

1
_ (HXk SR ket xk”2)

-,
5 (v~ By By - By R)
B [21ﬂ AR Ak — ok k1) 2

+ £ Byt Byt Byt By

. (Byk+1 — By — (By¥ — ByF 1), AkHl _ak (k= xk1)>i|

I .
< (”lk AR ket lk||2>
2
B .
+ 7, (IBy* — By '12 — By — By,

where = uses (A.1). Using the monotonicity of 8f and dg, we have the conclusion.
0O

3.1 Original ADMM 33

Theorem 3.2 Suppose that f and g are convex. Then for Algorithm 2.1, we have

Ik c K+1 K+1y _ Y *
I l|\//3(K+1)§f(X)+) = fXT) —g(y)

. ¢, A C
“K+1 JK+1 B(K +1)

C

AXK+1+B K+l_b < ,
I y I < BK + 1)

where C = ,_}}||x0 — 2*)1? + B|IBy° — By*||%.
Proof Summing (3.18) over k = 0,1,---, K and using the monotonicity of

zlﬂ IS+ — 2K)12 4+ B By*+! — By¥||? from Lemma 3.7, we have

1
IV =R 4 Byt — Byt

1 1
< xo_x*z BO_B*Z .
_K+1<ﬂll I~ + BlIBy yol

Then we have

BC
K +1

s

BIAXKH! + ByX ! —p|| = |A5H 2K <

C
IBy**! —By¥| < :
BK +1)
On the other hand, (3.18) gives
1 B
lk"'l_x* 2 B k-’rl_B * 12
2ﬁll Il +2|I y yoll
1 B
<)"k _)"* 2 B k _ B *112
—2,3” Il +2|| y vl
1 B 1
<)"0_)"* 2 B O_B * 2= C
< g A0 NI+ By — By =)

34 3 ADMM for Deterministic and Convex Optimization

So we have

K < VBC, (3.20)
C
IBy*+! — By*|| <
B
Then from (3.11) and the convexity of f and g, we have
FEE) = £0) + g5 — g(v") + (W7, AT 4 ByF ! —p)
1

3 IAKFT — 5K — 3K+ By AT — By K Akt — Ak

+ BBy ™ — By ||IBy* ! — By*|
C 2C
< + .
K+1 JK+1

From Lemma 3.2, we have the conclusion. m]

3.1.2.2 Ergodic Convergence Rate

Now we describe the ergodic O (Il() convergence rate, which was originally proved

in [10]. Davis and Yin [2] also proved that the O (Il<) ergodic convergence rate of
ADMM is tight, thus it cannot be further improved.

Theorem 3.3 Suppose that f(x) and g(y) are convex. Then for Algorithm 2.1, we
have

|fEED + oG5 — Fx) — gy =2k + 1) jﬂ@“)
AR LBy < 2VC
VBK +1)
where
<K+1 A ko oK+l 1SN k
X :K—l—lg)(’ y :K~|—1kzz;y’

and C is defined in Theorem 3.2.

3.1 Original ADMM 35

Proof Summing (3.15) overk =0, 1, --- , K, dividing both sides with K + 1, and
using the definitions of XX+ and $X*! and the convexity of f and g, we have

f(ﬁK-‘rl) +g(5,K+l) _ f(X*) _g(y*) ~|—()\,*,A§K+l +B5'K+l _b>

C
< .
T2K+1)

From (3.3) and (3.20), we have

K
ARKH L BoK+ bl = Akl gk
A" ™" + By I BK +1) ()
k=0
1
= I =20
B(K +1)
< e 4 1y (A0 =X+ IR =)
- 2./BC
TBK+1)
From Lemma 3.2, we have the conclusion. m|

3.1.3 Linear Convergence Rate

We discuss the linear convergence in two scenarios. The first scenario is under the
assumption that the objective is strongly convex and smooth. The second scenario
is under the assumption that the objective is not necessarily strongly convex and
smooth, but satisfies the error bound condition.

3.1.3.1 Linear Convergence Under the Strong Convexity and Smoothness
Assumption

We first discuss the scenario that g is both strongly convex and smooth, and B is
surjective [3].

36 3 ADMM for Deterministic and Convex Optimization

Theorem 3.4 Suppose that f(X) is convex and g(y) is wu-strongly convex and L-

smooth. Assume that |BTA|| > o||A|l, VA, where 0 > 0. Let = G‘ﬁgﬁz. Then we
have

1
”A‘k"rl _)"*”2 + ﬂ
28 2

—1
s<1+1/“ o) (1||x"—x*||2+ﬂ||By"—By*||2).
oV rs) 28 2

Proof Since g is differentiable, dg(y) is a singleton. By (3.7), (3.8), and (3.5), we
have

IBy**! — By*|?

V(") = —B"A and Vg(y*) = —-BTA%.

Then from |BA|| > o ||A|| we have

2

7 .

2L 2L
1

=L IVe(y*™) — VeI (3.21)

From (3.16), (3.17), (3.21), and Lemma 3.1, we have

7 1 1
SIBY T —By* |2 < Af == AR -
2||BJl5 28 28
+,3||Bk—B*2—ﬁ Bk+1_B*2 322
5 IBY Yol 2|I y Yol (3.22)
and
o’ k+1 2 Ly 2 Lkt 2
A — a2 < A —A%)12 = ARt — A
2L 28 28
B k *2 p k+1 * (2
+2||By By™|| 2||By By*|I©. (3.23)

Multiplying (3.23) by ¢, multiplying (3.22) by 1 — ¢, adding them together, and
rearranging the terms, we have

ot 1 B u(l—1
+ A‘k-‘rl _)"* 2 + + B k+1 _ B * 12
<2L 2,3) l l PR By vl

1

_ B
=8

) IBy* — By*|>. (3.24)

A% — A% +

3.1 Original ADMM 37

Letting

ot n 1 B ud—1)
o Top 27 2B
1 o B ’
28 2

we have t = and (3.24) reduces to

nL
uL+|B|302p2

H,3<72 < Lk w2, B k41 *12
+1 AN =252 + By ! — By
(ML‘F IB30282) 28 2

1 B
_2ﬂ|| I+, By Yl

upo?
uL+|B|3c2p2

2

1

/Lﬁoz =1 \//L o ‘
wL + IB|50282 2V L ||BJ»

Letting 8 = U‘ﬁ’éﬁz , which maximizes + 1, we have

3.1.3.2 Linear Convergence Under the Error Bound Condition

Now we move to the scenario under the error bound condition. There are many
works studying the linear convergence of ADMM under the error bound condition,
see [13, 21, 29, 30] for example. In this section, we introduce the results in [21] but
with many simplifications. Denote

af (x) + ATA
px,y,M) = [ag(y) +B"AL | and ¢ '(s) = {(x,y,MIs € p(x,y, V).
Ax+ By —b

From Lemma 3.3, we know that (x,y,A) is a KKT point if and only if 0 €
d(X,y, 7).

Definition 3.1 The set-valued mapping ¢ (w) is called as satisfying the (global)
error bound condition, if there exists constant x > 0 such that

distg(w, 1 (0)) < « dist(0, (W), Vw, (3.25)

38 3 ADMM for Deterministic and Convex Optimization

where
0 0 0
H= | 0B8B’B 0 and distg(w,¢"'(©0) = min [|w— w"||q.
0 0 II W*E¢7l(0)

See [30] for the examples in machine learning which satisfy (3.25). For example,
consider the following problem:

rgiyn(f(X)+g(y)), st x=y,

where f(x) = h(Lx) + (q, x) with strongly convex and smooth /4, and g(y) can
be [lyll1 or Y, llysIl, which corresponds to the sparse regularizer and the group
sparse regularizer, respectively, in which J is a subset of the indexes of y and y; is
a subvector of y by extracting the entries of y whose indexes are in J.

We give the linear convergence rate under the error bound condition (3.25) [21].

Theorem 3.5 Suppose that f(x) and g(y) are convex and ¢ (W) satisfies the error
bound condition (3.25). Then for Algorithm 2.1, we have

dis, ((Xk+17 yEH ka)’ ¢71(0))
-1

<|1+ ! distgy (", ¥, 1), 071 (0)).

2 2,1
< (BIAIZ + ;)
Proof From Lemma 3.3, we have
ﬂATB(yk+1 _ yk)
0 c ¢<Xk+l’yk+l’lk+l)_
1y k+1 _ 4k
Lk — 3k
Thus we have
1
2 disty; ((Xk+1, yer, Xk“), ¢71(0))
< dist? (0 ¢<Xk+1 k! xk+1))

1
o

3.2 Bregman ADMM 39
1
< BIAIZIBY ! —yOI7 + 5 I - 252

1 1
< (ﬁnAu% +) (ﬁuB(y"“ —¥OI? + 8 [ARF — xk||2), (3.26)

B

a
where we use the error bound condition in <.
Next, we choose

. 1
(x*,y*,A*) € Argmin <ﬂ||By"—By||2+ W—xuz).
xy.Dep-1(0) p

From the definition of H, we have
distyy ((xkﬂ, ykH lkH), ! (0))

, 1
= min (AT — A)12 + BBy — By||2>
xy.Mep=10) \ B

IA

1
5 AT — 3|12 + BBy T — By*|?

a 1
=, IA* — A% + BIBY* — By*||?
1
~ 5 AT — 2K)12 — BBy — ByF||?

2 disy ((xk, v, xk), ¢—1(0))

1
~ AT — k)2 — BBy — ByF||?

< dist ((xk, V&, xk), ¢*1(0))

1 . -
e (pIaB+) () o)

where % uses (3.15) and Lemma 3.1, L is by the choice of (x*, y*, A*), and % uses
(3.26). O

40 3 ADMM for Deterministic and Convex Optimization
3.2 Bregman ADMM

ADMM needs to solve two subproblems to update x and y, respectively, which are
time-consuming when they have no closed-form solutions. To address this issue,
we can use the linearization technique to make the subproblems computationally
efficient. See, for example, [8, 17, 25, 27, 28], and Algorithms 3.2 and 3.3. We
introduce a more general method, called Bregman ADMM, in this section.

Recall the Bregman distance (Definition A.15):

Dy (y, x) =¢(y) —¢(x) — (Vo (x),y —x),

where ¢ is a convex and differentiable function. We consider the general Bregman
ADMM, which consists of the following iterations:

x**1 = argmin (f(X) + g(yk) + (lk, Ax + Byf — b>
X
+§ |AX + By* — b||? + Dy (x, x")) , (3.27a)

y**! = argmin (f(ka) +g(y)+ <Xk, AxA*! 4 By — b>
y

+§ IAXK! 4+ By — b||> + Dy (y, y")) : (3.27b)
A = Ak 4 gAX ! 4 ByFt! — b). (3.27¢)

We present the general Bregman ADMM in Algorithm 3.1.

Algorithm 3.1 Bregman ADMM
Initialize x°, yo, A0,
fork=0,1,2,3,--- do
Update x**1, y*+1 and A1 by (3.27a), (3.27b), and (3.27¢), respectively.
end for

We can choose different ¢ and ¥ to give different variants of Bregman ADMM.
Specifically, when

BlIAI3
2l —w 2=

o =", llAx - w?, (3.28)
B 2
v(y) = ’3”2 ||2||y—V1|I2— §||By—vZ||2, (3.29)

3.2 Bregman ADMM 41

where u; and v; (i = 1, 2) are any constant vectors, we have

BIAI3 B
Dy(x,x) =", Zx—x|* — 5 1A= x)|1%,

B

,3||B||% !
W 2

Dy(y,y) = —yYI? = " IBly - y)II%,

which are independent of u; and v; (i = 1, 2). Then steps (3.27a) and (3.27b) reduce
to

x*1 = argmin <f(x) + gy + <Xk, Ax + Byf — b>
X

+ §||Axk LBy —b|2+ 8 (AT(Axk +Byf —b), x — xk>

BlIAI3
+7, 2 Ix — xk||?

_ k N AT [k k k
= Prox(ﬁ”AH%),lf (x — <ﬂ||A||2) A [x + B(Ax" 4+ By —b)D ,
(3.30)

y*! = argmin <f(xk+1) +8y+ <x", Ax*t 4 By — b>
y

+ §||Axk+1 + By —b|2 + B (B (A + By —b),y — ¥)
BIBI3
+, 2y — ¥*I1

—1
= PI-OX(/SHBH%)71g <yk _ (ﬂ“B“%) BT I:).k + ‘B(Axk+1 —+ Byk _ b)]) .
(3.31)

It is equivalent to approximating ’; |Ax+By* —b||? in (2.15a) and g |AxFt! + By —
b||? in (2.15b) by their quadratic upper bounds at x* and y*, respectively. Note that

B

IAX 4 By —b|” + B (AT (AX* + By* — b), x - x¢)

and

B

IAX! 4 By* —b|2 + B (BT (Ax*! + By* —b).y —¥¥)

42 3 ADMM for Deterministic and Convex Optimization

are the linear approximations of

B
2

B

5 |AX*H! + By — b2

|AX + By* —b||> and

at x* and y*, respectively. So we call iterations (3.30), (3.31), and (3.27¢) linearized
ADMM, which involves the proximal mappings of f and g. In many cases, the
proximal mappings of f and g are easily computable. For example, the proximal
mappings of £1-norm, £2-norm, and matrix operator norm and nuclear norm all have
closed-form solutions [16, 19].

We summarize the linearized ADMM for the case of the proximal mappings of
f and g being easily computable in Algorithm 3.2.

Algorithm 3.2 Linearized ADMM for the case of the proximal mappings of f and
g being easily computable (LADMM-1)
Initialize x°, yo, 20,
fork=0,1,2,3,--- do
Update x¥*1, y**1 and A¥+! by (3.30), (3.31), and (3.27¢), respectively.
end for

When the proximal mappings of f and g are not easily computable, but f and g
are L p-smooth and Lg-smooth, respectively, we may choose

L+ + BlA|?

o) = 7 f” ”2||x—u1||2—f(x)—§||Ax—uz||2, (3.32)
L, + 8B

vy = ¢ f” ”2||y—w||2—g(y)—’juBy—vZuz, (3.33)

where u; and v; (i = 1, 2) are any constant vectors. Then

L+ BlIAI3

Dyx.x) =7 f | ”2||x—x/||2 —f®+ &)+ (VfE), x— X))
—’; A — x|,
L, + B|B|?

Dy(y,y)= ¢ Al ”2||y—y/||2 —gy) +8y)+(Vey).y—v)

2

LB -y (3.34)

3.2 Bregman ADMM 43

which are also independent of u; and v; (i = 1, 2), and steps (3.27a) and (3.27b)
reduce to

x**! = argmin (f(xk) n (Vf(xk), X — xk> + () + <x’<, Ax + Byf — b>

+ 1A% £ Byt I 4 p (AT (A + Byt), x - x)
L+ BIALL
+ 7 ;0 Clx=xP

—x (L +p1AB) [Vreh + AT [+ paxt + By —w]].
(3.35)

y**! = argmin (f(x"“) +8(") + (Ve y - ¥) + (15, X1 + By —)
y

+ ’; |AX*+! -+ By* — bI? + 6 (BT (Ax*+! + By* —).y - ¥*)
Lg + BIBI3
+ T Py =y

=¥ (Lo + BIBIZ) [Vet + BT [+ paxtt! 1Byt b))
(3.36)

Similarly, it is equivalent to approximating f(x) + ’; |Ax + By* — b||? in (2.15a)
and g(y) + g |Ax**! 4+ By — b||? in (2.15b) by their quadratic upper bounds at x*
and y¥, respectively. Also note that

£+ (V7 6), x = %)

1A £ By I 4 p (AT (A% 4 Byt by, x—x)

and

(") + <Vg(yk), y— y")

+ ’;nAx"“ +By* — b + (BT (AX! 4 By* — b,y - ¥¥)

44 3 ADMM for Deterministic and Convex Optimization

are the linear approximation of

p
2

B

5 IAX*! 4 By — b2,

f&) + " JAx+By* —b|> and g(y) +

at x€ and y*, respectively. So we also call the iterations (3.35), (3.36), and (3.27¢)
linearized ADMM.

We summarize the linearized ADMM for the case of the proximal mappings of
f and g not being easily computable but the gradients of f and g being Lipschitz
continuous in Algorithm 3.3.

Algorithm 3.3 Linearized ADMM for the case of the proximal mappings of f and g
not being easily computable but the gradients of f and g being Lipschitz continuous
(LADMM-2)
Initialize x°, yO, A0,
fork=0,1,2,3,--- do
Update xkt+1 yk“, and AFH! by (3.35), (3.36), and (3.27c), respectively.
end for

3.2.1 Sublinear Convergence

The analysis of sublinear convergence rate of Bregman ADMM is similar to that of
the original ADMM. The proofs in this section are adapted from those in Sect. 3.1.2.
For Algorithm 3.1, Lemma 3.3 still holds with (3.1), (3.2), and (3.8) being replaced
by
0 cafx*) + ATAK + BAT (AX**! 4 By* —b)
+ Vo) — Vo),
0 € 9g(y**!) + B'A* + BT (Ax*H! 4+ By*t! —b)

+ vy — vy b, (3.37)
and

V) — Vo + Ve () € af (xFH),
Vet — vy + Ve yE) € ag(y'th,

respectively. Lemma 3.4 still holds without any modification. However, Lemma 3.7
does not hold any more and Lemma 3.5 should be replaced by the following lemma.

3.2 Bregman ADMM 45

Lemma 3.8 Suppose that f(x) and g(y) are convex. Then for Algorithm 3.1, we
have

(@f(xk“), X< — X*> + (@g(ykﬂ), yiH - y*> + <X*, AxFHL 4 Bykt! b>

1 1
S Ll L) Can e W
28 28
B

+ ' IBy" — By"|I* —

B

5 Byt — By,

Proof From the proof of Lemma 3.5, we have

(@f(XkJrl)’ <K+ X*> n (@g(ykJrl), yEH y*> T <x*’ AxEHT 4 BykH! b>

1 1

1
28 28 28
B B B
+ By — By*|I* — " IBy**! — By*|* — | |By*"! — ByF||?
2 2 2
+ <Byk+1 — By, AR+ xk>
a 1 1
< IAE a2 = a2
28 28
B B
+ IBy* — By*||* —) By — By*|I%,
where < uses Al + 5 v) > u,). O

Accordingly, Lemma 3.6 should be replaced by the following lemma.

Lemma 3.9 Suppose that f(x) and g(y) are convex. Then for Algorithm 3.1, we
have

f(xk+1) +g(yk+1) _ f(x*) _ g(y*) —i—(k*,AXk—H +Byk+1 _ b>

1 1

<
=28 28
B B
+ IBy* — By*|I* — 5 By — By*||?

+ Dy (x", xk) — Dy (x*, xh — D¢(xk+1, x©)

+ Dy (y*, ¥5) — Dy (v, ¥ — Dy ¥ yh). (3.38)

46 3 ADMM for Deterministic and Convex Optimization
If we further assume that g(y) is u-strongly convex, then we have

FETD) + g) = £x) = g(v") + (1%, AT 4 By —)

1 1

<
~ 28 28
Bk w2 B k+1 w2 Mokt £112
+ " IBy* — By*|I2 — T IBy*Tt — By* |2 — T lyF T -yl
2 2 2
+ Dy (x*, xk) — Dy (x*, xkHy — D¢(xk+1, xX)
+ Dy (v, ¥ — Dy (y*, ¥ — Dy ¥, ¥E). (3.39)

If we further assume that g(y) is L-smooth, then we have
FETD) + g) — £¢) = g(v") + (1%, AT 4 By —)

1 1

<
~ 28 28
B B 1
+ By — By*|? — T IBy*T = By* |2 — Vet — VeyHI?
2 2 2L
+ Dy (x*, x5) — Dy (x*, X1 — Dy (x*H1 x5
+ Dy (v%, ¥5) — Dy (v, ¥ — Dy ¥, ¥). (3.40)

Proof We use Lemma 3.8 and Point 2 of Lemma A.2 to prove these conclusions.
From the convexity of f(x) and g(y), we have

FEED) + g) = £¢) = g(v") + (1%, AT 4 By —)
= (V7 — (Vo - Vo) X —x)
+ (Ve — (VU - ueh) v -)

+ <)~*’ Axk+1 + Byk+1 _ b>

1 1

S R S S Ean e bl
28 28
+ 5Byt By i - Lyt By

+ Dy (x*, x5) — Dy (x*, X1 — Dy (x*H1 x5
+ Dy (y*. ¥ — Dy (v, ¥ — Dy FTL ¥

(3.39) and (3.40) can be obtained in the same way as in the proof of Lemma 3.6. O

3.2 Bregman ADMM 47

3.2.1.1 Ergodic Convergence Rate

Considering the ergodic convergence rate of Bregman ADMM, Theorem 3.3 still
holds with a little modification, resulting in the following theorem. The proof is
quite similar to that of Theorem 3.3, by summing (3.38) instead.

Theorem 3.6 Suppose that f(x) and g(y) are convex. Then for Algorithm 3.1, we
have

FEEY) 1 oK) = F(x*) — gy SZ(K) jg/(ll){llfll),
O
VB(K +1)
where
cK+1 1 paa k oK+l I 3 k
X :K+1;X7 ! :K+1k§y’and

1
D= p IA® — A% 1% + BIBY® — By*||* + 2Dy (x*, x°) + 2Dy (y*, y°).

3.2.1.2 Non-ergodic Convergence Rate

When we restrict
1 2 1
Yy =0 and Dy(x,y) = 2IIX—YIIM =, M((x —y),x—y)

for any fixed symmetric and positive semidefinite matrix M (that is, ¢(x) =
éxTMx), the O (jK) non-ergodic convergence rate still holds. In this case,
Lemmas 3.7 and 3.5 should be replaced by the following two lemmas, respectively.

Lemma 3.10 Suppose that f(x) and g(y) are convex. Let

1
V=0 and Dy(x,y) = 2||X—Y||12v[

for some symmetric and positive semidefinite matrix M. Then for Algorithm 3.1, we
have

1 B 1

1

1
< Xk)‘kfl 2 ﬁ Bk kal 2 k k—1 2.
—2,3” - Il +2|I y' — By | +2||X = X" m

48 3 ADMM for Deterministic and Convex Optimization

Proof From the proof of Lemma 3.7, we have
(@f(xk+1) — ey, xkH - Xk> n <@g(yk+1) _ $gyb), yh = yk>
1 —

= 28

p .
+ %, (IBy* — By '12 — By —By'?).

On the other hand, we have
<_M(Xk+1 —x) o M(xF — xk1), xR Xk>
1 _ _
= (1% = TRy = I xR — e —x — o =1y

1 k k—12 k+1 k2
= (I = xR = I =) (3.41)

Adding the above two inequalities together, we have
(V&) = ME = xb) = (9r6) — Mk =X) 5 - xt)
+ (Ve 0Mh - Tev. 4 -)
<) (le" — A2 =kt — xk||2)

= 2p

B .
+ % (1By* — By 12 — By - By

1
k k—12 k+1 k2
o (I = xR = I =)

Using the monotonicity of df and dg, we have the conclusion. O

Lemma 3.11 Suppose that f(x) and g(y) are convex. Let

1
Y=0 and Dy(xy) = lIx—yly

for some symmetric and positive semidefinite matrix M. Then for Algorithm 3.1, we
have

(@f(XkJrl)’ <K+ X*> n (@g(ykJrl), yEH y*> T <x*’ AxETT 4 BykH! b>

1 1
S Ll L L n e W
28 28

3.2 Bregman ADMM 49

B

5 IBy*+! — By*|?

B
+5 IBy* — By*||> —

1

The difference from Lemma 3.8 is that (3.14) holds since ¢ = 0. Similar to (3.38),
we have

f(xk-‘rl) _I_g(yk+1) _ f(X*) _ g(y*) +(X*,Axk+l +Byk+1 _ b>

1 B 1
< Xk—l*z Bk_B*Z k%12
_2ﬁ|| l +2|| y Yol +2||X X" lIm
1 B
_ <2ﬁ ”xk-i-l _)»*”2 + 5 ”Byk-‘rl _ By*HZ + ”Xk+1 _ X*HQM)

1
2
_ 1 ||xk+1 _Xk”Z_‘_ ﬂ“B k+1 —B k”2_|_ 1”Xk+1 _Xk”Z
28 2 y y) M) -

Similar to Theorem 3.2, we have the following theorem.

Theorem 3.7 Suppose that f and g are both generally convex. Let

1
Y =0 and Dg(x,y) = 2||X—Y||12v1

for some symmetric and positive semidefinite matrix M. Then for Algorithm 3.1, we
have

C

—||x*||\/ﬂ(K o S FEETY o5t — F(x) — g
T
TK+1 JK+1 B(K + 1)’

C

AXK+1+B K+1_b < ,
I y I < BK +1)

where C = ;nxo —2*[12 + BBy — By*|I® + [Ix* — x*|2,.
Proof Note that (3.11) also holds for Algorithm 3.1. From

VA - M@ — x5 e ar (k) and VgFt!) € ag(yF T,

50 3 ADMM for Deterministic and Convex Optimization

we have

f(Xk+1) +g(yk+1) _ f(x*) _ g(y*) —i—(k*,AXk—H +Byk+1 _ b>

< _; <xk+1 o Ak xk> + <Byk+1 — ByK, Ak xk>
_ ‘B (Byk+1 _ Byk, Byk+1 _ By*> _ (M(Xk+1 _ Xk), Xk+1 _ X*> .

Following the proof of Theorem 3.2, we have the conclusion. Note that since there

is an additional term — (M(Xk+1 — xk), xk+1 x*), we get \/i(CJr | here, rather than
2C .
JKH in Theorem 3.2. |

Remark 3.1 We explain why we consider the scenario of
1 7
Yy=0 and ¢(x)= 5 Mx.
When ¢ # 0, (3.14) does not hold since
Vet = vy "D + vy v € agr*),
rather than @g(ka) € 3g(y**1). So we can only get Lemma 3.8, rather than
Lemma 3.11. From the proof of Theorem 3.2, we know that it is crucial to keep the

term

1
”A‘k-’rl _)"kHZ + IB

28) IBy**! — By¥|1%.

On the other hand, when ¢ is a general smooth convex function, instead of (3.41),
we should upper bound

(Vo) = Vo)) + (Vo) - Vo), K —xt),
for example, in the following form, which does not always hold,

[~V — Vo) + (Vo) — Vo=, ¥~ x)

< D¢(Xk,Xk71) _ D¢(Xk+1,Xk).

3.2 Bregman ADMM 51
3.2.2 Linear Convergence

Now, we focus on the linear convergence of the Bregman ADMM. We consider
two scenarios. The first scenario is under the assumption that g(y) is pg-strongly
convex and Lg-smooth. The second scenario is under the assumption that g(y) is
mg-strongly convex and Lg-smooth, and f(x) is u s-strongly convex. For the first
scenario, we only linearize the second subproblem, i.e., let ¢ = 0. For the second
scenario, we linearize both subproblems. The proofs in this section are adapted from
those in Sect. 3.1.3.1, and we try to make the convergence rates as sharp as possible.

Theorem 3.8 Assume that f(X) is convex, g(y) is jg-strongly convex and Lg-
smooth, ¢ = 0, and ¥(y) is convex and Ly-smooth. Assume that IBTA| >
o ||All, YA, where o > 0. Then for Algorithm 3.1 we have

1
28 2

-1
1 2
< |1+ _min po , ng’l/«g
37 | Le+ Ly BIBIZ Ly

1 B
x (m A% — %)% +) IBy* — By*|I> + Dy (v*, y")) :

IBy**! — By*|I> + Dy (y*, ¥

Proof Similar to the induction in (3.21) and using (A.5) and (3.37), we have

Z(Lgaj) I Rf)P = Dy ¢y
< 2Ly + Ly) BT 5 — a1 — 2L1w IVy) = vy 12
< zig IBT A+ — 1) + vy (y*) — vy)2
= 2; IVe(y**h) = VeI, (3.42)
where < uses [[u+v[> > (1 — v)[u|? — (L = Dv|? forv = LgﬁfLw . From (3.39),

(3.40), (3.42) and Lemma 3.1 and using (A.4), we have

Mg k+1 w2 _ Mg k1)
By =By "< "y =yl
2|BJI3 2

1 1
2p 2p

IA

52 3 ADMM for Deterministic and Convex Optimization

:B k *112 'B
By* — B -
+2|I y Yl)

IBy**! — By*||?

22
8 Dw (y*, yk+1)

Mg k+1 %112
< —
Ly =5 lly vl
1 k *12 1 k+1 *12
< A =A% = NI = AT
2B 2B
B B
+ IBy* — By*||* — 5 IBy*t! — By*|?
+Dy (y*, ¥ — Dy (¥, y*),
and
o? k+1 %112 L %112 Lk %112
(A7 —A%" < A" =A%)17 — A" = A7
2(Lg + LI/,) 28 28
B B
+ IBy* — By*||* —) IBy*t! — By*|?

+Dy (v, ¥) — Dy (v, ¥y).

Adding them together, we have

1 2
1+ _min po , He 2 He
3 L¢+ Ly BIB|; Ly

1 B
x (2 P AT —)12+ 5 IBY*™ — By*|I> + Dy (y*, yk“))

1

- B
=08

5 IBy* — By*|I> + Dy (y*, ¥5).

A% — %% +

So we have the conclusion. O

Remark 3.2 From Theorem 3.8, we see that the complexity for achieving an e-
approximate solution is

L,+ L B2 L 1
ol 2"’+ﬂ” Iz, Lv log).
Bo Hg g €

B
2

When

L, + 8B
vy = *¢ f” ”2||y||2—g<y>— IByl|,

3.2 Bregman ADMM 53

Table 3.1 Complexity comparisons between ADMM and two variants of linearized ADMM
(LADMM)

Method Rates Linearization
ADMM 0 (/e B 10g 1) None
2
LADMM-1 o (<\/ ii ”]?7”2 + ”fﬂz) log :) Only on the augmented term
2
LADMM-2 o ((”fﬂz + ii) log :) On g and the augmented term

we have Ly, = Ly + B|/BJ|5 and
Lo+ L B3 L 1
O((¢ 2¢+ﬁll I3, W)log)
Bo Hg Hg €
L B2 B2 L 1
=0 g2+” !2+ﬂ” ”2+ llog).
Bo o Hg Hg €

Letting 8 = \a/‘/ré”ng and using ab < ;(a2 + b?) for all a, b > 0, the complexity
becomes

B, /L, IB|2 L 1 Bl L 1
0((“ ||2\/ g+|| |2|2+ 8>10g):0(<” |2|2+ g)log)
o\ Mg o Mg € o e €
(3.43)
Similarly, when

BIBI3 Iyl2 B

Y(y) = 5 5

IBy |,

we have Ly = ,B||B||%. Accordingly, also letting 8 = }/ﬁg”]; ¢ the complexity
becomes

B L B|? 1
0(<|| ||2\/ - gz)log)
o Kg o €

which equals the left hand side of (3.43) without the ii term. We list the
comparisons in Table 3.1.

54 3 ADMM for Deterministic and Convex Optimization

Theorem 3.9 Assume that f(X) is u p-strongly convex, g(y) is pg-strongly convex
and Lg-smooth, ¢ is convex and Lg-smooth, and ¥ (y) is convex and Ly -smooth.
Assume that |BTA|| > o ||A|l, YA, where o > 0. Then for Algorithm 3.1 we have

1
”)"k"-l _)"*”2 + ﬂ
28 2

-1
1 2 .
<|[1+ min po) Mgzﬁﬂg,ltj
4 Lg+Ly BIBl; Ly Lg

! B
x (m IV = 1717 +) IBY" — By |I* + Dy (x*, ') + Dy (v, y")) :

IBy*+! — By* |12 + Dy (x*, X1 4+ Dy (y*, y**)

Proof From the strong convexity of f we can obtain an inequality similar to (3.39),
then we have

'LLf D¢(X*, Xk+1)

L S 'LLf ||Xk+1 _ X*”2
® 2
1 1
< ARE P = A a2
28 28
B B
+ IBy* — By*||> —) IBy**! — By*|?

+Dg (x*, x) — Dy (x*, x* 1)
+Dy (v, ¥) — Dy (y*, ¥y,

Following the same proof of Theorem 3.8, we have

1 2 .
1+ min po , He 9 He) i
4 Lg+Ly BIBlI; Ly Lg

1 B
X (”A‘k"rl _ A'*Hz + ||Byk+l _By*”2 + D¢(X*,Xk+l) + Dlﬁ(y*ayk-’_l))

2B 2
1 B
= 98 [AF =A%) + 5 IBY* — By*||> + Dy (x*, x*) + Dy (y*, ¥5)
and obtain the conclusion. m]

3.3 Accelerated Linearized ADMM

In this section, we introduce how to combine ADMM with Nesterov’s acceleration
techniques.

3.3 Accelerated Linearized ADMM 55
3.3.1 Sublinear Convergence Rate

We first consider the case that both f and g are generally convex and g is L,-
smooth. In this case, we introduce the following accelerated linearized ADMM,
originally proposed in [24], and then extended in [22], where we linearize g at the
auxiliary variable v¥ in the y update step. The algorithm consists of steps (3.44a)—
(3.44f), and we present it in Algorithm 3.4.

vE = 0iy* + (1 — 0¥, (3.44a)

B

Xt = argmin (f(x) + (Xk, Ax + By* — b> +,
X

|AX + By — b||2) ,
(3.44b)

y**! = argmin (g(vk) + (Vg(vk), y— vk> + <kk, AxT! 4 By — b>
y

+ 8 <BT(AXI‘Jrl + Byk —b),y— yk>

Lgbi + BIIB|I3
+ Ly =¥), (3.44¢)
! =g xF ! 4 (1 — R, (3.444)
Y=oy + (1 - 0¥, (3.44e)
AFL =2k 4 g(AXFT! + ByFt! — b). (3.44f)

Algorithm 3.4 The first accelerated linearized ADMM for non-strongly convex
problems
Initialize x° = XY, yo = 570 A0,
fork=0,1,2,3,--- do
Update the variables by (3.44a)—(3.44f), respectively.
end for

The accelerated linearized ADMM has a convergence rate of O (11(+ IL<§),

which is faster than the O (LKg) one of the linearized ADMM (see Theorem 3.6,

where we omit the other constants and only keep Lg from iy (y*, y?) defined in
(3.34)) when Ly is very large. Below we give the analysis.
Denote

b= fG) —) + @) — g6 + (", AT + BF* —b).

By Lemma 3.1, £; > 0.

56 3 ADMM for Deterministic and Convex Optimization

Lemma 3.12 Suppose that f(x) and g(y) are convex and g(y) is Lg-smooth. Let
Ok € (0, 1], k > 0, satisfy

1—-06 1
s = fork>1, 6p=1, and 6_1 = oo.
9/{ Qkfl

Then for Algorithm 3.4, we have

£ £ 1
07 T 0}, 2B

L, PBIBI3 kw2 k1 xp2
_ _ — 3.45
+< , T 2, (lly yoI©—ly Yol) (3.45)

and

£ £ 1

Or T Ok—1 B
L6 BIBISY o o)
+< 5 +) Iy —y"Il
Lebet1 BIBI3
— (82 + _I_ 2 2 ”yk-'rl _ y*”2 (346)

Proof We denote L, as L in this proof for notation simplicity. From the optimality
conditions of (3.44b) and (3.44c¢), we have

0 € of xth) + ATk 4+ BAT (AXFH! 4+ Byt — b)
= af T + ATAMT — pAT Byt ! — By¥) (3.47)
and
0 = Vg(v) + BTA% + BT (Ax**! + By' — b)
+(L6; + BIBIZ ' — yb)
= Ve(v") +BIAT — gBTBG ! —y5)
+(LO + BIBIZ ! —yh). (3.48)

(3.47) gives

f&) = f&*
> <)\,k+l,AXk+l _ AX*> _ ﬂ<Byk+1 _ Byk, Axk+l _ AX*>

3.3 Accelerated Linearized ADMM 57

Thus, from (3.44d) and the convexity of f, we have
FETH = F(x*)
=0 (PO = £6) + (1 =00 (FE) - F0x)

< 9](()"k+1’ AX* _ Axk+1> +,39k <Byk+1 _ Byk, Axk+1 _ AX*>

+ -0 (f&) = fx9). (3.49)
From the smoothness and the convexity of g, we have
g(’y’k+1)
k ky ~k+1 k L k+1 k2
< g + (V). 7 =)+ gt vy
a k k ~k k+1 k L9k2 k+1 k2
£ gV + (Ve (1 = 0F + 0y —vE) + TRy v
= (1 -6 (365 + (Vo). 7 — v))
L6}
+ 01 (30 + (Vo(vO. Y+ — v 4+ T et 2
< (1-00gF")
+ 6 (g(Vk) + <Vg(vk), v - V"> + <Vg(vk), v - y*>>
L6}
2" Iy +! — y5)1? (3.50)

b k o LO; k1 k2
< (1 =0)g¥") + gy + I

+ 6 (BTA — BBTB(! — v
+(LO+ BIBIHGH! — ¥,y — 1)
k * L9k2 k+1 k2
= (1= 008G + g @)+ F Iy ¥

+ o (xk“, By* — By"+1> — Ok (B(y"+1 — 5, B(y* — yk“)>

n (L@,? +ﬁ9k||B||%) (yk+1 vk y — yk+1>7

58 3 ADMM for Deterministic and Convex Optimization

b
where = uses (3.44a) and (3.44e), and we plug (3.48) into <. Adding it with (3.49),
we have

CAR RN ICORFCADEF{
L6}
= (=60 (S&) = F0) + 2G5 —gM) + F Iy =y

2
o (xk+1’ b — Axkt! Byk+1>
+ B0k (B! — v, AX! 4 Byt —)
+ (167 + BoclIBI3) (! — ¥, y* —y*+1).
Adding (A*, AX“*! + B§**! — b) to both sides and using Lemma A.1, we have
FE) = F&) + g FF) — g6 + (1%, AR+ BF —b)

= (=00 (£ = £ + 8@ — g + (A, AR + BF* — b))
— Ok
B

+ B6; <B(yk+1 —yk), AxFHT 4 Byk ! b>

<)"k+1 _ A.*)\,k+1 _ A.k>

L6}
5 |

= (1= 60 (F&) = F&) +8G) — g(v") + (A", AF* + BF* — b))

k+1 k2
Ty

+ (L62 + BOIBIZ) (Y =¥,y =y 1)+ T E gy

Ok
+ zﬁ (”)"k _)"*”2 _ ”xk-i-l _)"*”2 _ ”xk-i-l _ Xk||2)

BOk
+ 0 (1Ax T By — b+ IBOM - P

_”AXkJrl + Byk . sz)

L6 + BOcIBI3
e (e S &

BOkIBI3

< (1-600 (F&) — £ +8GH) — g + (1*, AR + BF* b))

3.3 Accelerated Linearized ADMM 59

9
Tap
L6} + BOLIBII3
e (e e e B P

b
where % uses (3.44d) and (3.44e), and < uses (3.44f). Dividing both sides by 0,?

=0 — 1 we have the first conclusion. We can easily check that 6y is

02 62
k k—1
decreasing. Thus, we have 1gk9k = 0}(171 eff =< 9k171 . Dividing both sides by 6, we

have the second conclusion. O

and using

Theorem 3.10 Suppose that f(x) and g(y) are convex and g(y) is Lg-smooth. Let
Ok € (0, 1], k > 0, satisfy

1—6 1

92 - 92 fork = 1, 9() = 1, and 9_1 =0
k k—1

Assume that
I —A*)2 < Dy and |ly* —y*|I* < Dy, Vk.

Then for Algorithm 3.4, we have

Dy + Dy + |A*|/Dyx L
|FEFD + e - rx) —gI <0 (' K + 2)
D
JAXEH! + ByEH! —p < 0 (JK‘))
Proof Summing (3.45)overk =0, ---, K, we have

K
V4 1 1 1 1
K< STk a2, - + 0 — AP
0x 25 O b1/ 2B

ﬁanzZ” (1 >+< +ﬁanz)|| o2
Ok Bk—1 2

Dy, BDy|BI3 ﬁll 13
< Do e POYIBIS (L 2) 1y? -y
2.391(,B 20k 2

3 ADMM for Deterministic and Convex Optimization

60

So we have

Dy BDy|B|3
V4 <40
K+1 = bk (2;3 +)

1 L, BIBI3
||x°—x*||2+<;+ 5 2)y° - y*i2

02
+K[2ﬁ

a Dy+ Dy L,

=0 ,

(K +K2
where = uses
Or < , >0, 3.51
Skt T 35D

from

O 2 2 472

1 1\? 1 1 1
= + > and 6p=1.
le 2

On the other hand, note that

1 ~ ~
) (Axk+1 +Byk+1 _ b)

ek
=0 /e o
= (Axk+1 4 ByFt! - b) + k (Axk 1 BY — b)
k
1 1
- (Axk+1 4 By - b) n (A’i" + By — b) . k=0
Ok 91371

Thus, we have

912 (AXK+1_|_ByK+1 b)
K
K
£ (Ax“! 4 By —b)
k=0

3.3 Accelerated Linearized ADMM 61

1

o = 0. Hence
—1

a
where = uses

1
5 HA’i’K'f‘l +B’5;K+1 _ bH
QK

1 & /1 1 1
Z(B)ka_x* 4)‘XKJrl_l*
T B\ O BOk
£ 2D
BOk
where 9: = 0 is used again in % From Lemma 3.2 and (3.51), we have the
conclusion. O

Remark 3.3 When Dy and D, are small constants independent of L, the acceler-
ated linearized ADMM in Algorithm 3.4 has a faster convergence rate when Ly is
very large. However, this is a strong assumption and in general, we cannot prove it.
In fact, from (3.46) we know

Gt | 1 L1 | BIIBI

Ok 28 2 2

1 L, BIBI3
< A.O—)\,* 2 8 2 O_ k ZEC.
—2,3” [+<2+ 5 ly” —y*I

That is, we have

2C
AT — %2 <28C and |yFTT —y*)? < ,
BIBI3

where the bound C depends on L.

Next, we give another accelerated linearized ADMM [14], which consists of
steps (3.52a)—(3.52¢) and is presented in Algorithm 3.5.

O (1 — Op
ut = xk 4 Ok) k 1)(x’<—x’<—1), (3.52a)
k—1

Ok (1 — Op—
v yh g RO =00 ey (3.52b)
Ok—1
k+1 : k L k2 k
X = argmin fl(x)+<Vf2(u),x>+ 2||x—u Il +<X ,Ax>
X

A 2
+F (AT(Auk—i-ka —b),x>+ PIALZ, — wep2). (3.52¢)
9k 29k

62 3 ADMM for Deterministic and Convex Optimization

. L
yk+1==ngmn1<gwy>+<ngo*xy>+-zuy——vﬂﬁ4—@ﬁ,By>
y

B 2
+ﬁ@ﬁmﬂwm%—mﬁ+ﬂ”bw—%w, (3.52d)
O 20k
A=Ak 4 Br(AXFT! 4+ By ! — b). (3.52¢)

Algorithm 3.5 The second accelerated linearized ADMM for non-strongly convex
problems
Initialize x° = x~ 1, y0 =y~ 1, A9,
fork=0,1,2,3,--- do
Update the variables by (3.52a)—(3.52e), respectively.
end for

The second accelerated linearized ADMM has three differences from the first
one (Algorithm 3.4). Firstly, Algorithm 3.5 linearizes both subproblems, while
Algorithm 3.4 only linearizes the second subproblem. Secondly, Algorithm 3.5 can
be used to solve composite problems, that is,

fX) = fix)+ f2x) and g(y) = g1(y) + &2(¥)

with nonsmooth f; and g1 and L-smooth f> and g». Thirdly, Algorithm 3.4 has the
convergence rate measured at the averaged points (XX,). Thus, the convergence
rate is in the ergodic sense. As a comparison, the convergence rate of Algorithm 3.5
is in the non-ergodic sense. Note that when 6y = 1 forall k and t = 1, Algorithm 3.5
reduces to the non-accelerated linearized ADMM (Algorithm 3.2 when f> = go =0
(in which case L = 0) and Algorithm 3.3 when f; = g; = 0). Below we give the
analysis on Algorithm 3.5.
Define several auxiliary variables

M kg P (Auk +Bvf — b) ,
Ok
M ok P (Ax1 4 B - b) ,
Or
~k 1—6
fk =k g PO =60 (Axk + Byt — b) , (3.53)
Ok

1 1— 6
S S <&

s

= 6

1 1— 6
R S ¥

5 =
Ok

Ok

s

Ok

3.3 Accelerated Linearized ADMM 63

and let sequence {6} satisfy

1 =01 1

= -7, 6=1, and 6_;=1/1, (3.54)
Ok+1 Ok

where 0 < t < 1. We first give the following lemma.

Lemma 3.13 For the above definitions in (3.53), we have

PR 5 [Ax"+1 + Byt — b — (1 — 6)(Ax* + By* — b)] ,
k

3

ok
R At H _ 5 HByk+1 Byt
i

K
~K+1 ~0
AR :9’3 (AxK+1~|—ByKH—b)+ﬂtZ(Axk+Byk—b),
K
k=1
uk — (1 = 6)x* = GrF,

v — (1 = 6)y* = g5k,

. ~k —
Proof From the definitions of A* and A¥*! and ! 9k0~]:1+ 1 = elk — 7, we have

N 1-6
L gk +B k+1 (Axk+1 + By — b)
Ok+1

1
= Akl + 8 (9 - r) (Aka —l—Bka - b)
k

— 2 Br (Axk+1 1 By<tH! - b) +8 (;k _ T) (Axk+1 1 By<tH! - b)

— kg eﬂ (Axk+1 1 By<tH! - b) (3.55)
k

_ sk 1 =6 k k B k1 k+1
=i-p (Ax + By b)+ 0 (Ax + By b) (3.56)

=i+ eﬂ [Axk+1 £ Byt b — (1 — 6)(AX* + Byf — b)] .
k

On the other hand, from (3.55) and the definition of Xg“ we have

k
et x1§+1 H _ 5 HB(ka B Vk)H .
k

64 3 ADMM for Deterministic and Convex Optimization

From (3.56), - Gk = 9}{171 — 1, and 9}1 = 1, we have

K+1 £ kl

,\+ ~0 + A

-H =y (-1
k=0

K
1 1— 6k
ﬁEO[Gk(X + By) gk(ery)

»
Il

B

M~

1 1
|:9k (Axk+l +Byk+l _ b) _ 9k I(Axk _I_Byk _ b)

»
Il

0

+t<Axk+Byk—b>i|

K
AxFH £ ByKH by + g7 Y (Axk 4 Byf — b) .
k=1

B

:9K

For the fourth identity, we have

0
(1= 0x* + 0t = (1= ox + k [xk - ek,l)xkfl]
k—1

Or(1 — Oy
=xf + k(k 1)(xk —xkil).
Or—1

The right-hand side is the definition of u¥. Similarly, we can also have the last
identity v€ — (1 — 6;)y* = 6s*. O

Lemma 3.14 Suppose that fi1, fa, g1, and g» are convex, and f» and g are L-
smooth. With the definitions in (3.53) and (3.54), for Algorithm 3.5 we have

Qlk (F&D) + gD = F) - g + (M, AXH 4+ By — b))
a ekl_l (f(xk) +e(y") — f(x") — gy + <x*, Ax* + Byf — b>)
+ 7 (f6 + 805 = £) — g(v") + (M AX + Byt — b))

< :3 (”AX* _ Ark+1”2 _ ”AX* _ Ark||2>

(R =2 =1 =)

3.3 Accelerated Linearized ADMM 65

1 1
+ (L0c+ BIAI) Ix* = 17 = (L6 + BIAIR) Ix" — 412

1 N\ ok kg2 L 2\ pox k12
+, (LOk ~I—ﬂ||B||2) ly* —s"[I” —) (L9k+1 + ,3||B||2) ly* —s“""|°.
(3.57)

Proof From the optimality conditions of steps (3.52¢) and (3.52d) and the defini-
. k+1 k+1
tionsof A} and A, , we have

k+1 k Ty k41 ,8||A||% k+1 k
0cofix™)+VHLu)+AL + L+ 0 (x —u"),
k

k+1 k T4 k+1 ﬁ”B”% k+1 k
0cogi(y")+Vge(v)+B' A, + L+ 0 (y — V).
k

From the convexity of f] and g1, we have
A = A

A 2
> — <Vf2(uk) FATOT 4 (L 4+ Pl ”2) T — by, x — Xk“> :

O
g1(y) — g1 y*th
k+1 B|3
- <Vg2(vk) LB (L A “2) G vy — yk+1>.
k

On the other hand, from the smoothness and convexity of f> and g», we have

HEED
< He) + (V) X a4

L
k1
X" =

k)12
2

= fz(llk)+<sz(llk),x—uk>+<Vf2(uk),karl —x>+ u

L
< 100 +(V 2@ X —x)+ It -k

and

k1 kg2
v

L
"™ <o+ (ng(vk), yirt - y> + ly

2

66 3 ADMM for Deterministic and Convex Optimization

So we have

Fx — fxh
= i) + X — AETH -

Al L
_<ATXII+1 + (L + 5”9 ||2) xk+ uk)7X_Xk+1> - x5+ — w2
k

v

- Ax A (L N ﬁnAn%) (41— x— x4)

Ok
_ §||Xk+1 b
and similarly
gy) — gy**h
> (x/;rl, By — Byk+1> . (L + ﬂgj”%) <yk+1 vk y - yk+1>
B 124||yk+1 VR,

Adding them together, we have
FEH 4" = fx) — s

A 2
< <xlf+l,Ax—Axk+1> + (L + Bl ||2> <Xk+l o x _Xk+1>

2

Ok
L k+1
+ ; ||Xk+1 . uk”2 + <)~2+ By — Byk+1>
BIBI3 L
+(L+ L e e e E e &

Ok

3.3 Accelerated Linearized ADMM 67

Letting (x,y) = (x, y¥) and (x, y) = (x*, y*), respectively, we have
SO 42D — Fx) — 2

2
< (k+1 Ax* Axk+1> + (L + ﬂ”9A”2> <Xk+1 —uk x* — Xk+1>
k

L k+1
+2”Xk+1 k” +< . By* Byk+1>

B3 L
. (L+ﬂll ||2><yk+1 Sy oy

k+1 k||2
O 2

ly*™™ —v

and

FEY e —) — g9

2
< < PLas AX Axk+l> + (L + /6|[;\||2> <Xk+l —ub, x _Xk+1>
k

L k+1
IR = a2 ()

B k_B k+1>
) y y

BIBI3 L
+ (L + 0 2 <yk+l — vk gk yk+1>_|_ ; Iy< ! — vE)2,

Multiplying the first inequality by 6x, multiplying the second by 1 — 6%, and adding
them together, we have

FETH +6"h = Fx) — g
— (=00 (£6) + 80 — fx) — g(r)

< k+1

< L OAX" + (1 — G AXF Axk+1>

k 1
+ (15" 6By + (1 - 0By — By 1)

A 2
+ (L + ﬂ”@ ”2) <Xk+1 _ uk’ gkx* + (1 _ ek)xk _ Xk+1>
k

B 2
+ (L + ,3”9 “2) (yk—‘,—l _ Vk, Qky* + (1 _ ek)yk _ yk+l>
k

L L
+ 2 ”Xk+1 _ uk”2 + 2 k+1 k”2.

ly*™™ —v

68 3 ADMM for Deterministic and Convex Optimization
Adding
(x*, AXHf ByR L (1 —) (AXF + ByF) — Okb>
to both sides, we have
FEY £ eFTh — F(xY) — 26 + (x*,Axk+1 4 ByFt! - b>
— (=60 (F&9 +205) — F(x) = g") + (W, AX + By* — b))
< (x’{“ A%, 6 AX* + (1 —) AXS — Axk+1>

k+1

+ ()‘2 — A%, 6By* + (1 — 6)By* — Byk+1>

A 2
+ (L + 13”9 ”2) <Xk+1 _ uk’ Qkx* + (1 _ Qk)Xk _ Xk+1>
k

B 2
n (L N ﬁll@ ||2) (yk+1 —vE Byt + (1 — 0y — yk+1>
k

L L
+ o I =Py v

= (x’f“ — T AR + (1 — GAXE — AXk+1>

+ (XIE—H . x*7 Okb+ (1 — ek)(AXk + Byk) _ (Axk+1 + Byk+1)>
A 2

+ (L + ﬁ”@ ”2) <Xk+1 _ uk’ Qkx* + (1 _ Qk)Xk _ Xk+l>
k

BII?
n (L n ﬂ||9 ||2) <yk+1 Oy + (1 — B)y* — yk+1>
i

L L
+ ”Xk+1 _ uk||2 4 ||yk+1 _ Vk||2,

3.3 Accelerated Linearized ADMM 69

From Lemma 3.13, for the first inner product, we have
(x"“ — AT AXT + (1 — G0AXE — Axk+1>

= 5 <Auk — AX g AXT + (1 —) AXF — Axk+1>
k

P (||9kAx* + (1 — 6)AXE — AxEH)2

260k
B
20

II=

— |6k AX* + (1 — ;) Axk — Auk||2) + A — AL
k

0
_ B (IIA " AR - Ax - A1) + 212 1A — A2
k

6 Al
ﬁ k (”AX Ark+1 ”2 _ ”AX* _ Ark”2) + /3” ”2 ”uk _ Xk+1”2’
k

where = uses (A.1); for the second inner product, we have
()J;Jrl — A%, 6tb + (1 — 6 (AXF + ByF) — (AX* ! + By"+1)>
o N
)

6 N A ~k 2
- (18w e g i)

~k
SN (CuR S
=28

where = uses (A.3); and for the third and the fourth inner products, we have

II=

+1 BIBI3
26k

a k+12
= X

1
16X + (1 —)Xk —u¥ > — S0 + (1 = Or)x* —

[\

1
kL _ k2
- _|Ix u
2|| l

1 1 1
— 02k — P2 — a2t — L2 — k! — kg2
’ Al l) Al l 2|I I

70

and

3 ADMM for Deterministic and Convex Optimization

(yk+1 _ Vk, eky* + (1 _ gk)yk _ yk+1>
1
|9ky* + (1 — Qk)yk _ Vk||2 _ 5 ”9ky>k + (1 _ Qk)yk _ yk+1”2

Iy
)
1 k+1 k2
= Iy =l
1
= 29,3||y* — k)2 - 2e,§||y* — s 2 =y = vE2,

where both = and L use (A.2). So we have
f(xk-‘rl) _I_g(yk+1) _ f(X*) _ g(y*) + (X*,AXkH +Byk+1 _ b>
— (=00 () + 805 — F&) — g5 + (1%, Ax + Byt — b))

0
< P (1Ax — AR - Ax - ARP)
O (138 +1
T (A S T NS,
26
1
(102 + BOIAIZ) (I = IR = I —)

1
+ (262 + pouiBIz) (y* =12 = ly* —s+117).
Dividing both sides by 6 and using 15}5)" = 0k1,1 — 7, we have

Qlk (F&FD +g0Mh) = £ = g(v") + (M AXT 4 By — b))

o

(769 +86M = 7o) — s + (1 AX By b))
+ 7 (£O0) + g —) — g6 + (A, AX* + By — b))

B

) (”AX* _ Ark+1”2 _ ”AX* _ Ark||2>

=
~k ~k+1
(I =22 = 1A =)

!
2p

3.3 Accelerated Linearized ADMM 71

1

+, (Lo + BIAIR) (Ix" — eI = x" — P41
1

+, (Loc+ BIBIZ) (I =12 = ly* =1 1P).

From 641 < 0;, we have the conclusion. O

Lemma 3.15 Suppose that f1, f>, g1, and g2 are convex, and f>» and g> are L-
smooth. With the definitions in (3.53) and (3.54), for Algorithm 3.5 we have

f(XK+1) +g(yK+1) _ f(X*) _g(y*) +()\,*,AXK+1 +ByK+1 _b>

<6gC (3.58)
and
U (AxK+1 4 ByK+! _p iAkBkb
(T) oS)
Loy 2C
§’3Hx A +\/ﬁ, (3.59)
where
C= ! P HAX* —ArOH2
2

2
y* _SOH .

b (e piaig) e) (L o+ pimi3)

Proof Summing (3.57)overk =0,1,---, K, we have

91 (f(XKH) +e th — Fx) — gy + <x*, AxK+ 4 ByK+! _ b>)

K

+7 30 (F&9 + 805 — F&x) — 20" + (1, Ax + Byt — b))
k=1

1

= 2p
1 2\ ik 0p2 ! 2\ ot 2
+, (L+BIAB) Ix* =1 + (L+BIBI3) ly" — <]

1 -
=c— R o,
28

(R = a2 = 5 2 = s - aep?

72 3 ADMM for Deterministic and Convex Optimization
where we use

=1, 6y=1, and
1 B
 (Lok1+ BIAIR) Ix =412 = D axs — Arf 12,
From Lemma 3.1, we have (3.58) and

~K+1

L - <280,
A iOH < Hio — |+ v28c.
From Lemma 3.13, we can have (3.59). |

We need to bound the violation of constraint in the form of ||Ax+ By —b/||, rather
than (3.59). The following lemma provides a useful tool for our purpose.

Lemma 3.16 Consider a sequence {a"‘},‘?‘;1 of vectors. If {a*} satisfies

K
(1/t+ K1/t — D]ak*! + Zak <c¢, VK=0,1,2,---, (3.60)

k=1

where 0 < T < 1, then

K
Yoat|<e, VEK=1.2,--.
k=1
Proof We define
K K
bX = prak+! 4+ Zak and sX = Zak,
k=1 k=1

where ng = 1/t + K(1/t — 1). Then

Thus

3.3 Accelerated Linearized ADMM 73

Therefore, since |bX || < c is assumed and an € (0, 1), if |Is¥|| < ¢ we have

1 1
IsK) < . X+ (1 -)ns"u <c.
K K

On the other hand, letting K = 0 in (3.60), we have Is'] = |la'|| < ¢ < ¢. So by
mathematical induction, the lemma is proven. m]

Now, based on the previous results, we are ready to present the convergence rate.

Theorem 3.11 Suppose that fi, fa, g1, and g2 are convex, and f> and g are L-
smooth. With the definitions in (3.53) and (3.54), for Algorithm 3.5, we have

_ 2GR K+1 K1y _ ey oyt
1+K(1—t)§f(x)+) = fXT) —g(y)
2C Il c

T 1+K(Q-1) 14+K(d-1)

and
2C
AxK+! L gyK+! _bH < ’
H Xty S 14 K(1—1)
where
J IO 2 2
c= o= f HAx*—ArOH
28 2
1 2 1 2
o (L+pIaB) [x ="+) (2 +p1B13) |y =]
_ 1|30 4 2C
andCl—ﬂHX A+ IR
Proof Since
1

1 1
= +1—7= + k(1 —1),
O k-1 Oo

we have

P 1 1
k= = .
4 k(=1 1+k(-1)

74 3 ADMM for Deterministic and Convex Optimization

For simplicity, let a¥ = Ax* + By* — b. Then from (3.59) we have

K
[1/T+K(1/r — D]af T + > a*
k=1

1. 1 2c 1
< R+ = 'C., VK=0.1,---. 3.61)
8 t\ B T

From Lemma 3.16 we have

K
D at
k=1

1
< C;, VK=12,---.
T

So
2lc
lak+) < ik . VK =1,2,-.
I/t+ K/t —-1)
Moreover, letting K = 0in (3.61), we have
2lc
la'll < €1 < ol
I/t +0(1/z—1)
So
2C
HAXK+1+ByK+1—bH < L VK =01, .
1+ K(1—-r1)
Then from (3.58) and Lemma 3.2, we can have the conclusion. |

3.3.2 Linear Convergence Rate

In this section, we further assume that g is pg-strongly convex. We want to
accelerate the following linearized ADMM:

B

x*1 = argmin <f(x) + <kk, Ax + By~ — b> +,
X

|AX + By* — b||2) ,

y*! = argmin (g(y") + (Vg(y"), y— y"> + <X", AX*T 4+ By — b)
y

3.3 Accelerated Linearized ADMM 75

Ly + BIBI3
+ B (BT AxF By).y —yF)+ T TRy -y).

xk+1 :xk +ﬁ(AXk+1 +Byk+1 _ b),

where f and g are both convex, and g is Lg-smooth. Recall from Remark 3.2 (by
2
setting ¢ = 0) that its complexity is O ((”fﬂz + i;’) log i)

We give the following accelerated linearized ADMM, which is adapted from
the accelerated Lagrangian method proposed in [15]. The iterations are shown in
(3.62a)—(3.62f) and we present the algorithm in Algorithm 3.6.

wE = 0yF + (1 — 0)FF, (3.62a)

0
X! = argmin (f(x) + <xk, Ax + By* — b> + ﬂ2 |Ax + By — b||2> :
X

(3.62b)
y**! = argmin ((Vg(wk), y> + (Xk, By> + B0 <BT(AXI‘Jrl + By* —b), y>
y
1/6 1 0 , .
+ + /ng y - P2} y + /*ng
2\« o T e\
1)
— 0 {/ngk + ayk
a + Mg
- [Vg(wk) + BTAK 1 goBT (AxkH! 1 Byf — b)] } (3.62¢)
! —oxk+! 4 (1 — 9)F-, (3.62d)
¥ =y + (1 - 0)F, (3.62¢)
AFL =2k 4+ g (AXFH! 4+ Byt — b). (3.62f)

Algorithm 3.6 Accelerated linearized ADMM for strongly convex problems
Initialize x® = X0, y0 = §°, A0,
fork=0,1,2,3,--- do
Update the variables by (3.62a)—(3.62f), respectively.
end for

76 3 ADMM for Deterministic and Convex Optimization

Table 3.2 Complexity comparisons between ADMM, linearized ADMM (LADMM), and its
accelerated version

Method ADMM LADMM Accelerated LADMM

Lg|B|3 IBIZ | L Lg|BI3
Rates 0] <\/ <17 tog :) 0 ((g uz) log :) 0 <\/ <1 tog i)

2
The complexity of Algorithm 3.6 is O \/ Lﬁ ”fﬂz log i), which is lower than
8

2
the O ((”fﬂz + ;LLZ) log i) one of linearized ADMM. We list the comparisons in

Table 3.2. Note that ADMM needs to solve a subproblem in the update of y, while
the linearized ADMM and accelerated linearized ADMM only performs a gradient
descent. Thus, it is reasonable that ADMM has a faster rate than linearized ADMM
but the accelerated linearized ADMM fills in this gap of rate.

Lemma 3.17 Suppose that f(x) is convex and g(y) is jLg-strongly convex and Lg-
smooth. Let @ < 1. Then for Algorithm 3.6, we have

SR = f6) + gGF — g(v") + (4, AR 4 BFH! —)

= (1-0) (F&) = £ +8G) - g + (A AR + BF* — b))

0% 0% | weO\ ar1 w2 MeO i k2
+2ally -yl - 2a+) ly*™ —y"II” —) ly*" —w'||

1
+ g (IR =27 = b =)

62 L.0% PO B3
—<2a— gz -, 2) Iy = R (3.63)

Proof We write g and L as and L, respectively, for notation simplicity. Similar
to (3.49) and (3.50), we have

FETH = F(x
=0 (F&H = £6)) + (1 -0) (F&) - fx)
<o (xk“, Ax* — Axk+1> + po* <Byk+1 — By, Axkt! Ax*>

+(1-0) (f& - f&x9) (3.64)

3.3 Accelerated Linearized ADMM 77

and

g@h
<(1-0)gG) +6 (g(w") + (Vg(w"), vt — wk) + <Vg(wk), yeH - y*})

L6?
+ k41 yk”2

, Iy
uo
= (1= 0)gG") + 080 = 1 1wk =y I +0(Vewh). ¥+ —y")
L6?
s et ol (3.65)

where % has an additional 6 compared to (3.49) due to the additional 6 in (3.62b)
and (3.62f). From (3.62c), we have

k+1 k k+1 k
Howh =y

0
— p(y (y
o

= Vg(wX) + BTA1 — goBT (By* ! — ByX). (3.66)
So we have

0 (Vg(wk), yi - y*>

0
—_f <M(yk+1 _ wk) + a(yk-‘rl _ yk) _'_BT)"k-i-l _ ,BQBT(Byk+1 _ Byk),

yk+1 _y*>
o) S ST ke+1 (2
=1 (W =y 12— Iy =y = iy - W)

92
o (I8 =y I = I =y =y -)

200
—_9 (xk+1’ By ! — By*> nyre (Byk+1 _ Byk, Byk+1 _ By*>. (3.67)
Combining (3.64), (3.65), and (3.67), we have
SETY = F&) 4+ ¢GT — 2(v")

=1 =0) (F&) = () + 8G9 — 0)

78 3 ADMM for Deterministic and Convex Optimization

2

0 0 uo
+ Iy =y - (2a +,)uyk+1 -y

20
w0 g a2 (07 L0\ i
5 Iy w| (Za 5)y yl

2

0 <xk+1’ AxA 4 Byk+1 . b>
+ﬂ92<Byk+1 — Byf, Axf+! 4 ByFt! b>.

Adding (A*, AX*T! 4+ By**! — b) to both sides, and using (3.62d) and (3.62¢), we
have

f&k+l) _ f(X*) _I_g(s;k+l) _ g(y*) +<)‘*’A§k+l _I_Bs;k-i-l _ b>

=1 =0) (f&) = f&) + G — g0") + (1", AF* + BY* — b))
0 k)2 0% uo k+1)2
t oV Y —<2a+ 5)IIy -yl
_MQ k+1 k2 92_L92 k1 kg2
) ly w| <2a) ly yll
_9 (xk+1 %, Ak Byk ! b>
+ ,BQZ(Byk“ _ Byk’Aka ~|—Byk+1 . b>
£(1-0) (F&) — £ +gG") — g + (1", AX + BF* — b))

62 02 ue
+ ||y"—y*||2—(+)nyk“—y*n2

200 200 2
MO i kg2 92_L92 k1 kg2
) lly wh| ra) lly vl

1
B
= (1-0) (F) = f(x) +8G") — g(v*) + (A, A + BF* — b))

()‘k—i-l Ak Ak lk> + ,BOZ(Byk“ _ Byk’Aka ~|—Byk+1 . b>

2

0 k %112 62 uo k+1 %112
+ 2Ollly Yl S +) lly Yl

_MQ k+1 k2 92_L92 k1 kg2
2|Iy w | <2a) Iy Yl

3.3 Accelerated Linearized ADMM 79

1

1302 k+1 k+1 2 k+1 kyi2
+ 7 (1ax By b + BT -y

— I AXE! 4 Byk — b||2)

< (1-60) (F&) — 1) + 8@ — g6 + (1", AR + BF — b))

62 0> b
+ Iy —yrIE - (2a +)uy"+1 -y II?

200
_ 1o 175 — wh 2 — 6 _ L6? _ BO*IBI3 Iy = yE 2
2 20 2 2

1
+ g (I =277 =t),

b
where we use (3.62f) in = and <. So we have the conclusion. |

Denote

te=1=0) (£ = F&*) + @) — g0 + (", AF + BF* — b))
2 1

0
+, I =y 17+

IAF —a*)2,
2u 28

Theorem 3.12 Suppose that f(x) is convex and g(y) is jig-strongly convex and
Lg-smooth. Assume that

IBIS _ L T
, = and ||B° Al = oA, YA, where o > 0.
o Mg

Let

1 L B|?
o= ., B= %, and Qz\/MgH gzil.
4L, 1Bl Lgo

Then for Algorithm 3.6, we have

2
HgO
b1 < |1-— lk.
(\/Lg”B”%>

80 3 ADMM for Deterministic and Convex Optimization

Proof Again, we write i1g and Lg as u and L, respectively, for notation simplicity.
For the algorithm, we have

f&k+1) _ f(x*) _I_g(s,’k-i-l) _ g(y*) +<X*,A§k+l _I_Byk-‘rl b>
LR - Fixt) — (_ATX*’§k+1 _ X*>

+ g @) — g ") — (-BTAS T — y)

\/w-

> ||Vg(y"“> VeI

[~

. ||Vg(i"“> +B7ax|?

d 0
2L o
2
— BOBT By — ByF) + vg(w) — ve G
oviBras o ! u(y T — wh)
- 2L 2L

0 2
+ (T —y5) — poBT By ! — Byb) + Vg(wh) — Vg F T

fA=ve? , 1 /1 '
> A +1 _ A% _ -1 4 +1 _ k 2
=, "=, 1Nl I

492
+ o IV =R 4Ot IBI Iy — v

+4L207 Y —yh2). (3.68)

b
where = uses (3.6), > uses the convexity of f and (3.4) and the convexity and L-
smoothness of g, (3.5), and (A.5), = uses 3.5), 4 uses (3.66), é uses |[u + v||2 >

f
(1 —=v)lu)? = (! = Dv||?, and > uses (3.62a) and (3.62¢).
Multiplying both sides of (3.68) by g and plugging it into (3.63), we have

0
(1 - 2) (F&*D = o) + G — g4
+<x*’A§k+1 1BV - b>)

= (1-0) (F&) = f&) + G — g6 + (A", A + B — b))

3.3 Accelerated Linearized ADMM

6 k %112 6 uo k+1 %112
+2a||y -yl —<2a+ 5 ly"™ — ¥yl

1 1 (1-v)?
T i P I C R
28 28 4L

no (1 O et k2
_ _ -1 _
[2 Q}) .| w|

1 L BIBIZ 6 /1 1
2 2 2 4 2
- - = — -1 B L
’ |:201 2 2 L\v o? +A7IBl; +

k+1 k2
x [yt =yl

= (1=0) (F&) = £) + G — g + (1", AF* + BF* — b))
2 2

0% kw2 07 MO\ k1 k2
+2ally vyl 2a+) lly vyl

1 1 1—1v)o20
+ Ik a2 - ;4= AR — %2,
28 28 4L

where we let

18

v=_.. B

and o =
19

B3 4L’

such that

0 1 Ou?
R —1) 7" >0, and
2 v L

1 L BIBI3 6 (1 1 PP,
- = — —1 B L) =0.
20 2 2 L\v o2 TAIBl+ =
Thus, we have

1+ 1+

1—6/2 oau (1 —v)o?p0
™ 1-0 9 2L

x [(1 —0) (f(i"“) — f&) 4+ g FThH - gy

o < 62 1
(AR B b)) Iy x*nz}

82 3 ADMM for Deterministic and Convex Optimization

= (1=0) (F&) = F&) + 3G — gv") + (1", AT + BY — b))
2 1

0
+ o Iy = yIP 4+

A% — A%,
2a 2B

Thus, we have

o < 1-6 1 1 .
k+1 = max 3 3 k
1=6/27 1450 A=)

au (1 —v)o2p6
) 1 - Ek
20 4L

7 026
=0|max{1—-6,1-— , 11— 5 L
Lo IBII3
2
%
= O | max 1—“,1—02 L,
Lo IBIl5

_ 2
o <1 and (1 —-v)o<po <
0 2L

a 0
<maxi{1-— ,1-—
2

where we let

1

such that % holds. This can be fulfilled by the following choice of parameters.

2 2
Letting 6 = \/’Ll]:zlz, we have [, = \/L"lglz% From the assumption of ”]:!2 < i,
we have 6 < 1, then
1 —v)o?po
s amd TPy pa
0 2L
The proof is complete. O

3.4 Special Case: Linearized Augmented Lagrangian
Method and Its Acceleration

In this section, we consider the following simpler problem, which will be used in
Sect. 6 for distributed optimization,

ming(y), s.tz. By=Db,
y

3.4 Special Case: Linearized Augmented Lagrangian Method and Its. . . 83

which is a special case of Problem (2.13) with f(x) = 0 and A = 0. Consider the
following Bregman augmented Lagrangian method (ALM), which is a special case
of the Bregman ADMM (Algorithm 3.1) and is presented in Algorithm 3.7,

B

By =i Dy 1y) G0

y**! = argmin (g(y) + (Xk, By — b> +
y

).k+1 :Xk + ﬂ(ByI’H—l _ b) (369b)

Algorithm 3.7 Bregman ALM

Initialize y° and A°.
fork=0,1,2,3,--- do

Update y**! and A¥+! by (3.69a) and (3.69b), respectively.
end for

As a special case of Theorems 3.6 and 3.8, we have the following convergence
rates for non-strongly convex and strongly convex problems, respectively.

Theorem 3.13 Suppose that g(y) is convex. Then for Algorithm 3.7, we have

Kl o D 2VDIA*|
le(y" ") — gy)|52(K+1) JBK+1)
24/D
BAK+1_b ,
IBy ”S\/ﬂ(Kle)
where
| Kl

SK+1 k
y —K+1];y and

1
D= p A% — A% + BIBy® — By*||* + 2Dy (y*, y°).

84 3 ADMM for Deterministic and Convex Optimization

Theorem 3.14 Assume that g(y) is jig-strongly convex and Lg-smooth, y(y) is
convex and Ly -smooth. Assume that IBTA|l = o|All, VA, where ¢ > 0. Then for
Algorithm 3.7, we have

1
”)"k"-l _ A'*Hz + 'B
28 2

-1
1 2

< |1+ _ min po , /ng’ﬂg
3 Le+Ly BIBl; Ly

! B
x (zﬂ 1M =277 +) IBY" — By*II* + Dy (v", y")) :

IBy**! — By*|2 + Dy (v*, y**1)

Remark 3.4 Similar to Remark 3.2, when

Lyt PIBIE e g - #

By|?,
) 2|I M

Y(y) =

letting 8 = \U/ﬁLEHLZ ¢ the complexity is
B3 L 1
0 ((” ﬂz + g)log)
o e €

BIBI3 , B
= Iyl* =7

When

Y (y) IBylI?,

the complexity becomes

Bl [L, IBI3 1
O((u ||2\/ g, | |2|2>10g)
o Mg o €

Consider the following accelerated linearized augmented Lagrangian method,
which is presented in Algorithm 3.8,

wk = oy* + (1 — 0¥, (3.70a)

y<l = arg;nin ((Vg(wk), y> + (Xk, By> + Bo <BT(Byk —b), Y>

+1 9+
205'ug

1 /6
Y-, (y"+ugwk>
a+'ug o

3.4 Special Case: Linearized Augmented Lagrangian Method and Its. . . 85

1 6
= {Mgwk + yk
o

Z t lg

- [Vg(wk) + BT 1 goBT (By* — b)] } (3.70b)
Y=oy ! + (1 — 0)F, (3.70c)
AF Ak 4+ go Byt — b). (3.70d)

Algorithm 3.8 Accelerated linearized ALM

Initialize y° = 3° and A9.
fork=0,1,2,3,--- do

Update w¥, y*+1, 741, and A*+! by (3.702)~(3.70d), respectively.
end for

As a special case of Theorem 3.12, we have the following convergence rate
theorem.

Theorem 3.15 Suppose that g(y) is pg-strongly convex and L g-smooth. Assume
that

B3 _ Lg T
,0 = and ||B" A|| = oA, YA, where o > 0.
o Mg

Let

1 L B2
o= ., B= 5. and 9=\/Mg” !2.
4L I1BIl5 Lgo

Then for Algorithm 3.8, we have
2
Hg0O
b1 = |1- Ck,
(\/ LguBu%>

te=(1-0) () — g+ + (A", BF* — b))

where we denote

+ o Iy — y*I> + ke,
2a 2B

86 3 ADMM for Deterministic and Convex Optimization
3.5 Multi-block ADMM
In this section, we extend ADMM to solve the following problem with multi-blocks:
m m
ngnZﬁ(x,»), st. Y Axi=bh, (3.71)
i=1 i=1
while the previous sections only introduce the case of two blocks. Denote
m
fO =) fix), A=[A - Al and x=(x].- - .x))7.

The augmented Lagrangian function of Problem (3.71) is as follows:

2

L(X1, - X, A) = Zﬁ(xi)+<k,ZA,-xi —b>—|— A
i=1 i=1

A straightforward extension of two-block ADMM to the multi-block case is to
update the primal variables xi, --- , X,, sequentially and then update the dual
variable, yielding the following scheme:

%+ = argmin L (xl, XK xk x") , (3.72a)
x|

Nl;“ = argmin L (i’f“, X2, x’§, ,xﬁi, kk) ,
X2

~k+1 _ cans ~k+1 k k 1k

X; _argxmmL< L XL X, X i+1~-~,xm,k),

1

xEH = argmmL(kL fnJrll,xm, kk), (3.72b)

Xm

AFl =2k 4B (ZA X -) (3.72¢)

with ka f“. However, Chen et al. [1] gave a counter-example to show that the

above dlrect extension of ADMM for multi-block convex minimization problems
is not necessarily convergent. Thus, we should make several modifications on the
original ADMM for convergence guarantees.

3.5 Multi-block ADMM 87
3.5.1 Gaussian Back Substitution

In this section, we introduce the Gaussian back substitution scheme [9], which first
predicts if“ for all i € [m] using (3.72a)-(3.72b), and then corrects xf“ from

R+,

Denote
ATA; 0 - 0 ATA; 0 - 0
M = AJAIATA - 0 and H= 0 AjAy " 0
: : .0 : R |
ATAL ATA, - ATA, 0 0 ---ATA,

Lemma 3.18 Suppose that f;(x;) is convex for all i € [m]. Then for the above
iterations (3.72a)—(3.72c), we have

f('i’k-‘rl) _ f(x*) + <A.*, ZA[}‘(’;{+1 _ b>

AU : IR

2 H;Jc+l o
H
B¢ x) M X)) (3.73)

Proof From the optimality condition of the update of ')Zf.‘H, we have

i m
0 e afi KT +AM + AT [AR + > Ak —b
j=1 j=i+l

i
= an G+ ATT AT | S0y (R) |.
j=1

where we denote

m

M =k g[S At —p

j=1

So we have

i
~ k+1 ~ ~
L& < i - <Afx Al | DA (x’;“ - x’;) X - x7>

j=1

88 3 ADMM for Deterministic and Convex Optimization

and thus
m o1 i
FERAY < Fx*) — Z<AiT)‘ + + BAT ZA/ (§IJ§+1 _leg) ’§2’_<+1 _X;_ﬁ>
i=1 j=1
e
= f(x%) <)~ " ,ZA; (if'H x;">>
i=1
m 1
-B Z <ZAJ, (§/;+1 _ Xk) A, <~;’<+1 X*)> ’
i=1 \j=1
which further yields

f&k+1) _ f(X*) +< i ~k+1 >
< X* ZA~k+l >
SN NMCERRMCIEN)
i=1 \j=1

_ _; (xk+1 Lk xk> _ B (§k+1 B X*)T M <§k+1 _ Xk)

= 21 <ka_** 2
B

—B <§k+1 _ X*)T M (§k+1 _ Xk) ’

_ ka+1 L*

e)

where = uses (A.3).
On the other hand,

y <§k+1 B X*)T M (§k+1) y HNkH 3+l H2

—_8 (§k+l B Xk)T M (§k+l _ Xk) —B (Xk B X*)T M <§k+1 _ Xk)

k+1)‘k+1H2

+ 5
3 _’; H’)Zkﬂ _XkHi{ _8 (Xk —x*)TM(ik“ _Xk)’

3.5 Multi-block ADMM 89

. a
where in = we use
k1 kN np (k1 ok
(x —X) M (x —X)
k1 N AT (k1 ok
= (x —X) M (x —X)

T
_! (ik“ —xk) (M+MT) (’i"“ —x")

2
1|« ’ 1 T
= ZA/ (§IJ;+1 _ X]j) i) <§k+1 _ Xk) H (§k+1 _ Xk)
j=1
o [L)).

Thus we have the conclusion. O

We need to make the right hand side of (3.73) in a form of @k — @k+1 5o that a
recursion can be established. To this end, we need to define x**! and find G > 0 so
that

_ l; Hikﬂ _ XkHi _8 (Xk _ X*>T M (;(«kJrl _ Xk)

-4 (ka . 2) (3.74)

_ ka—i-l —x*
G

2
G

holds. Note that

2 2
k * k * k—+1 k
Hx X G Hx x" 4+ DX x°) G

= (¥ - xk)T DTGD (¥+! —xt) — 2 (x* - x*)T GD (¥4 - x).
By comparing the above identity with (3.74) we know that we should define
X =xk 4 D (R —xk) (3.75)
and find G > 0 and D such that
D’GD=H and GD=M
hold. Assume that A;’s are all of full column rank. Then M and H are invertible. Let
D=MT'H and G=MH'M".

Then we can check that the requirements on G and D are all fulfilled.

90 3 ADMM for Deterministic and Convex Optimization
Note that with the above choice of D, (3.75) can be rewritten as
X = xk L M- TH(e+ xk), (3.76)

which can be computed by the famous Gaussian back substitution efficiently due to
the lower-block-triangular structure of M. So the above correction scheme is called
Gaussian back substitution. Finally, we get the method presented in Algorithm 3.9.

Algorithm 3.9 ADMM with Gaussian back substitution

Initialize x(l), .- xm, A0,

fork=0,1,2, 3 - do
Update xk+1 -, %+ and A4 by (3.722)-(3.72¢).
Update x: 1, - .. {;*1 by (3.76).

end for

With (3.74), (3.73) becomes

f(~k+1) f(X)+ <)~* ZA 3h+1 b>

i=1
< (B)5 (K o)

Then similar to the proof of Theorem 3.3, we have the O (Il() convergence rate in

2
_ ka+1 _x*

_ ka+1 _

the ergodic sense.

Theorem 3.16 Suppose that fi(x;) is convex for all i € [m]. Then for Algorithm
3.9, we have

N C 2/C I
‘f(- =2k +1) T UBK + 1)
. 2V
e Wﬁl)
where
gEH1 ZK:’yz“ and C = Hx" A* +,8Hx -x| .

k=0

3.5 Multi-block ADMM 91
3.5.2 Prediction-Correction

The Gaussian back substitution (3.76) is actually not simple enough as it still
requires to solve m small-scale linear systems when computing (3.76). In the
following, we give an improved strategy [12]. It is based on the key observation
that when solving (3.72a)—(3.72b), we actually only need A,~XfC rather than xf.‘ itself.
So we do not have to compute xf.‘ explicitly as (3.76) does.

Denote
AL 0 --- 0 10---0
0Ay--- 0 I1---0
P= .. . and L = , (3.77)
0 0 ---A, I1---1

then we can check that

I-10---00
0I -I---00

L =|::: :::], M=PLP, and H=P'P.
00 0 -..1T—I
00 0---0TI

Similar to the deductions in Gaussian back substitution, we need to define x¥*+1
and find G’ > 0 so that the following relationship holds:

_ l; Hikﬂ i H2 _8 (Xk _ X*)T M (ikJrl _ Xk)

H
2 2

— Hka“ —Px*) . (3.78)
G’ G’

= 'g (Hka — Px*
Note that
L)

_ _l; HP'ikJrl Pyt H2 _8 (ka _ Px*)T L (P;(kﬂ _ ka)

92 3 ADMM for Deterministic and Convex Optimization

and

Hka — Px*

2
- Hka —Px* 4+ D (Pi"“ - Px"))

G’

__ (P;(kﬂ _ ka)T D) G'D (IrikJrl _ ka)
2 (ka - Px*)T G'D (P’i"“ - ka) .
So we should define

Px“t! = Pxt + D/ (Pik“ - ka> (3.79)

and choose

D=L7T and G =LL" (3.80)

so that (D)7 G'D’ = I and G'D’ = L hold.
(3.79) can be explicitly rewritten as

Alkarl Alx’f
Azkarl Arxh
Ap— len—Hl Ay 1X§1 1
A, xkFl Apxk
I-10---00 AT — Ak
01 -I---00 AT — Aoxk
+ .
00 0 - 1T-I||A, XM A ixk
00 0---01 A~’<+1 Apxk,

Alka +A2x A2Xk+1
A XI;FI + A3x3 Agkarl

= : (3.81)
Ay XoH ~|—Amx — A, X
A ’i’lranrl

So we can obtain A; xk +1

conveniently without solving linear systems. However,
xk+1

may not exist given A; x making the next round iteration and Lemma 3.18
invalid. So we need to revise the above algorithm and Lemma 3.18 accordingly.

3.5 Multi-block ADMM 93

Introducing variables Ef, which play the role of A,'xi.‘ in (3.72a)—(3.72b),
iterations (3.72a)—(3.72b) can be rewritten as follows:

x]f‘H = argmin L, (xl,Eg, T Xk> (3.82a)
x|

’i’;“ = argmin L, (’i’f“, X2, &5, L EE. Xk) ,
X

! = argmin L; (R g g]fn,lk),
Xi

R+ = argmin L, (LR x xk), (3.82b)
X

A =2 B (ZA Xt b) : (3.820)

i=1
gl — gk T (Pik“ _ §k> ’ (3.824d)

where

Li(Xi, -, Xis &y qs 5 Epps D)

=Xi:fj(xj)+< ZAX,+ Z £ — > ZAx,+ ZS —b

Jj=1 Jj=i+l j=i+l1
T T T r
andgz(gl,gz,...,gm) .

Algorithm 3.10 ADMM with prediction-correction

Initialize &7, - - - 50 20,

fork=0,1,2,3,--- do
Update xk+1 -, XEHL and A5+ by (3.822)(3.82¢).
Update gk“ . gf;“by (3.82d).

end for

94 3 ADMM for Deterministic and Convex Optimization

With (3.78) and (3.80), Lemma 3.18 changes to the following one.

Lemma 3.19 Suppose that f;(X;) is convex foralli € [m]. Then for Algorithm 3.10
we have

f(’)‘('k+1) _ f(X*) 4 <X*, ZAII;({'C+1 _ b>

i=1
<! (Hx"—x* 2)
2B

+§ (HEk e g1~ Py

-

‘xk+1 _aF

2

2
L’)’

And Theorem 3.16 still holds for Algorithm 3.10 with C changing to

LLT

2+,3H§0—Px* ’

B LL7

3.5.3 Linearized ADMM with Parallel Splitting

Although the prediction-correction technique introduced in Sect. 3.5.2 resolves the
convergence issue of naive multi-block ADMM, it nonetheless has drawbacks. First,
it requires to maintain two groups of variables, the predicted and the corrected,
thus increasing the memory cost (at least doubled). Second, for sparse or low-rank
problems, neither the Xf“ in the Gaussian back substitution nor the 5?‘“ in the
improved version can be sparse or low-rank, thus the memory consumption can
be even more. Third, it may not be easy to solve subproblems (3.72a)—(3.72b) or
(3.82a)-(3.82b). So in this section we use the linearized augmented Lagrangian
method (Algorithm 3.7) to solve Problem (3.71), which consists of the following
iterations:

X1 = argmin (f(x) + (Xk, Ax — b> + B (AT(Axk —b),x— xk>

+ §||x—x"||i), (3.83)

m
AL =2k 48 (Z AxE - b) , (3.84)

i=1

3.5 Multi-block ADMM 95

where L = Diag([L11,,, - - , LIy, 1), in which n; is the dimension of x; and L; is
to be determined, and we use

B
2

B

5 |AX |2

V(x) =

2
IxIlg, —

in (3.69a), which results in

B
5 1Ax— b|? + Dy (x, x")
= ’; IAXE — b))% + 8 <AT(Axk —b).x — xk> n g Ix — x4|12.

We only need to check that v (x) is convex, which is equivalent to
IXIE > IAX]%, ¥x.

We can easily check that

2 m m
2 2 200112
AX]|” = =m Y lAxi|F <m > A5 1x 12

i=1 i=1

m
D_Axi
i=1

So we may choose L; > m||A,~||%. Thus, (3.83) becomes separable and the
subproblem for each x; is

m
xi_‘+1 = mg;nin <f,-(x,~) + <xk, A,-x,-> + 8 <AIT Zij’; —b],.x; — xﬁ‘>
1 j=1
L.
+ﬂ2’ lIx; — XZ»‘HZ), (3.85)

which can be solved in parallel for i € [m]. Thus, we call the method linearized
ADMM with parallel splitting [18, 20] and present it in Algorithm 3.11.

Algorithm 3.11 Linearized ADMM with parallel splitting

Initialize x(l), cee x?,l, 20,
fork=0,1,2,3,--- do

Update x]f“, cee xﬁﬁ'l, and Ak by (3.85) and (3.84), respectively.
end for

From Theorems 3.13 and 3.14, we have the O (1/K) and the linear convergence
rates of Algorithm 3.11 under different conditions.

96 3 ADMM for Deterministic and Convex Optimization
3.5.4 Combining the Serial and the Parallel Update Orders

In the previous section, we have seen that by replacing the serial update order
in linearized ADMM by the parallel update order in the linearized augmented
Lagrangian method (also called linearized ADMM with parallel splitting), we can
prove the convergence for the multi-block case. Since for the two-block case, serial
update order is faster than parallel update order, we may combine them for faster
convergence when dealing with the multi-block case [23]. That is, divide the m
blocks into two partitions

(1,"',]’)’[/) and (m/+17"'am)

and then update the two partitions in serial, while updating the blocks in the same
partition in parallel. The algorithm is explicitly given as follows (for example, in
[11,23,26]):

m
xf‘“ = argmin <f,-(x,~) + (kk, A,~x,~> + 8 <A1T (ZAtxf — b) , X — xﬁ‘>
X;

t=1
2
m'BllA; I3

5 I _X;c”z), Vi<i<m,

x];"’l = argmin (fj (xj) + (ka A./'X./'>
Xj

m’ m
+,B<AJT ZAtfo—l— Z A,xf—b ,xj—xlj>

=1 t=m’+1

(m —m"BIA;I3
+ 2

m
A=Ak 4 g (Z AT b) .

i=1

lIx; —x’;||2>, Vm' +1<j<m,

Denote

A=) fix), FB®= Y fikx)
i=1

i=m'+1
B:[Alv"'vAm’]s C:[Am’+11"'sAm]s

y=&],---.x')T and z=(x£,+1,--- xIT

3.6 Variational Inequality Perspective

Similar to the previous section, we can rewrite the first two steps as
y**! = argmin (Fl (y) + <Xk, By> + B <BT (Byk +Czk — b) Y — y">
y

B
+ 5 Iy =¥,

B

= argmin <F1 (y) + (x", By> +, IBy 4 Cz* — b||*> + Dy(y, yk)>
y

and
2 = argmin <F2(z) + (Xk, Cz> + B <CT (Bka + CZk — b) yZ — Zk>
z

+§m—zW@)
B

= argmin (Fz(z) + (Xk, Cz> +
z 2

um“wfrmW+mmf0,

respectively, where

Ly = Diag (|m' A1 3L - 1A 13,])

Ly = Diag ([= m)|Aw 11380+ . o = m)An I3,])
Bio _ Bimor

o =" IvIE, - IByI”.
Boo B

@ =" I, - ICz)”.

in which n; is the dimension of x;. We see that it is exactly the linearized ADMM in
(3.27a)-(3.27¢). So we can also have the sublinear and the linear convergence rates
under different conditions from Theorems 3.6 and 3.8, respectively, which is faster

than making all the m blocks parallel.

3.6 Variational Inequality Perspective

Now we introduce the variational inequality viewpoint of ADMM, which has
been frequently used in He’s works (for example, see [9, 10, 12]). Introduce the

Lagrangian function of Problem (2.13):

Lx,y,A) = f(x)+g(y) + (A, Ax+ By —b).

98 3 ADMM for Deterministic and Convex Optimization
(x*, y*, 1¥) is a saddle point if it satisfies
L(x*,y",A) < L(x",y*,A%) < L(x,y,1%), VX, y, A.
For the left inequality, we have
(X — 1%, Ax* + By* — b) <0.
For the right inequality, we have
F®) +8) = F) = g4 + (x = x* ATA) + (v - ", BTA) = 0.

Combining them together, we have

X — x* AT)*
) +e@y) — f&) —gy") +< y—-y' |, BT A* >
A —AF —(Ax* + By* — b)
>0, Vxy A (3.86)
Denote
X X ATA
w=|y]l, u(w):(>, and F(w) = BT
A y —(AXx+ By — b)

For simplicity, in the sequel we write u instead of u(w) and define
O = f(x)+ g(y).
Then (3.86) reduces to
O(w) —) + (w—w*, F(w")) >0, Vw. (3.87)

(3.87) is called the variational inequality of Problem (2.13). The following lemma
can be easily checked.

Lemma 3.20 (x*,y*, A*) is a saddle point of L(x,y, A) if and only if it satisfies
(3.86).

We can also easily check that

(w—W, F(w) — F(W)) =0, Vw,W. (3.88)

3.6 Variational Inequality Perspective 99

Thus, (3.87) is equivalent to
O(u) —O(u*) +(w—w*, F(w)) >0, Vw. (3.89)

We say that W is an approximate solution of the variational inequality problem (3.89)
with accuracy e if it satisfies

o@) —O(w) + (W—w, F(w)) <e€, Vw. (3.90)

Especially, € = 0 gives (3.89).

3.6.1 Unified Framework in Variational Inequality

We first write the original ADMM (Algorithm 2.1) in the form of (3.87) and then
give the unified framework.
From (3.1), (3.2), and the convexity of f and g, we have

F&x) — FY + <ATI"“, X — xk+1> >0, (3.91)
~k+1
g — g + (BTX 4 BT By — By y -y) 20, (392)
where we denote
xk+1 xk+1
WhH = 2k+1 _ yk+!
PUa A+ B(AXKT! + Byk — b)

Adding (3.91) and (3.92) together and writing it in the form of (3.86), we have

X — S+ ATRKH]
fO+gy) — fET — G + < y-y* | B! >
A — 2! — (AR + By*+! — b)
> <xk+l — A AR +B'ik+l _ b> n ﬁ<B3,~k+1 _ Byk7 Bs;k+l _ By>

T

AX — Ax 00 0) (AR — AxF
— BSﬂH—l — By 08I 0 B’}‘,’k+1 _ Byk
Ty 01 }31 Tk

— (Vvk+l _ W)TPTHMP(VV/(-FI _ Wk),

100 3 ADMM for Deterministic and Convex Optimization

where we denote

00 0 100 A0O
H=[0810 |, M=[010]|, and P=[0BO
00 41 0811 001

From (3.3), we can also check that
Pwit! = Pwh — M(Pw* — PWKT).

So ADMM belongs to the unified ADMM framework shown in Algorithm 3.12 [12],
where we specify & k — Pwk for ADMM.

Algorithm 3.12 Unified ADMM framework in variational inequality
Initialize £°.
fork=0,1,2,3,--- do
Predict WAt satisfying

o) — H@) + (w — kL F(v~v’<+1)> > !~ w)T PTHMPW ! — £), vw.

Correct £5! by
€k+l _ Ek _ M(Ek _ Pwk-%—l).

end for

Next, we show that the linearized ADMM and ADMM with prediction-
correction both belong to the unified framework. More examples can be found
in [12]. Since the linearized ADMM with parallel splitting is a special case of the
linearized ADMM, we omit the details.

For the linearized ADMM, from the updates (3.30) and (3.31), we have

x — Fk+1 ATRKH]
fO 4y — FETH —e@FFH + < y=y+of, B3 ! >
A -2 — (AR 4 BFFH! —b)

> ('X]H‘l _ A., A’)‘(‘k-i-l + B’y‘k+l _ b> + ﬂ”A”% <§k+l _ Xk,§k+l _ X>

— ,3<A§k+l _ AXk, A§k+l _ AX> +[3”B”%<’ik+l _ ykv'y‘k+1 _ y>

¥+ —x\ [BIAIZI-BATA 0 0 e+ _ xk
= ¥ —y 0 BIBI3I 0 yerl — yk

— (Wk‘l‘l _ W)THM(VVk+l _ Wk),

3.6 Variational Inequality Perspective 101

where we denote

§k+l Xk+l
= | g | = gkt ,
PR A 1 BAXET! + Byk — b)

BIAIZI— BATA 0 0 I 00
H= 0 BIBI3L 0 |, and M=|0 I 0
0 0 él 0 8B I

(3.93)

We can also check that
whHl = wh — M(wk — w5,
So the linearized ADMM belongs to the unified framework in Algorithm 3.12 with

P=1 Ek = wk, and H and M defined in (3.93).
For the multi-block problems, denote

X| ATy
. Xl . m
w=| |, u=| | Fw= - L@ =Y fitx),
X A;l i
X,
y " (X5, Aix; —b)

and
k+1 “
Pl =xk+ﬁ<25§<—b).
i=1

Then for the prediction (3.82a)—(3.82d), we have

k41
X] — l{—l—l ATX
m m . :
e+l :
Do) =Y L&Y)+< . ~k+1 ; ATRAH! >
i=1 i=1 m
A= 2T ~ (ARt —b)

o g >E<

(A ik—H) , A;§f+l — A,’X,‘>
j=1

102 3 ADMM for Deterministic and Convex Optimization

AR A) (B0 0 0 [AR g
B A ~k+1 — ApXm BI BI --- BI 0 ~k+1 Ek
’X" Y I T 1 1 I x"“_xk

(""k"rl)TPTHM(P"‘/(+1 Ek)’

where we denote

Al .- 00
LLT -7 : .. . :
Ho B 10 ’ M:(L 0)7 p=|]
0 ﬁI Bd---D I 0 ---A, 0
0 - 0 I
=& AN, g=@l gl

and L is defied in (3.77). From (3.82d) and (3.82c), we can also check that the
following relationship

EkJrl — gk _ M(‘Ek _ Pi;'karl)

holds. Thus ADMM with prediction-correction also belongs to the unified frame-
work.

3.6.2 Unified Convergence Rate Analysis
In this section, we give the convergence rate of the unified framework in the sense

of (3.90) [12].
Theorem 3.17 Suppose that 6 () is convex. Define

K K
~KHT ~k+1 AK+1 _ iy
w X_:w and 1 = K41 X_:u
Suppose that
M'H' +HM —M"HM =0, P'HP >0, and PTHP +#0. (3.94)

Then for Algorithm 3.12, we have

9(&K+1)—9(U>—< Wi F(w)>— 2(K+ 1)”50 Pl Y

3.7 The Case of Nonlinear Constraints 103
Proof From the two conditions in Algorithm 3.12, we have that for any w,

e(u) _ 9(’61{"'1) + <W _ Wk-’rl’ F(Wk+l)>
> (Vvk+1 _ W)TPTHM(PVV/{+1 _ gk)
— (Wk+l _ w)TPTH(gk-l-l _ Ek)

al
)

k41 k412
[P —),

(1" — Pwiify — 16" — Pwilf + IPF" — ¥,

where = uses a generalized version of (A.3).
We can check that

IPF — g6 — P — £
= [PW! — X |If — IPWE! — &5 — MPF ! — &4 |1
— 2(PWk+l _ gk)THM(PWk-Fl _ gk)
_ (PVVk+1 _ Ek)TMTHM(PVVkJrl _ };-k)
— (PVka _ gk)T (HM 4 MTHT _ MTHM) (PVVk+1 _ gk)
> 0.
Using (3.88), we have that for any w,
o) — O + <w e F(w)>

1 k+1 2 k 2
= (185 — Pwiig — 18 — Pwil).

Summing over k = 0,1,---, K and dividing both sides by K + 1, using the
convexity of f and g, we have the conclusion. O

We can check that ADMM, linearized ADMM, and ADMM with prediction-
correction all satisfy (3.94). So their convergence rates can be given by Theo-
rem 3.17 in a unified way.

104 3 ADMM for Deterministic and Convex Optimization

3.7 The Case of Nonlinear Constraints

In this section, we introduce how to extend ADMM to solve the generally convex
program with both equality and inequality constraints. Consider problem:

Igiyn (fx+ @),
s.t. ho(x) <0,

po(y) <0,
Ax+ By =b,

where f, g, ho, and pg are convex functions. Define
h(x) = max{0, ho(x)} and p(y) = max{0, po(y)}.

Then we can turn the inequality constraints into equality constraints. Thus, we
consider the following problem instead:

Ig‘{iyn (fx) +gy),

s.t. h(x) =0,
p(y) =0,
Ax+ By =b. (3.95)

Define the augmented Lagrangian function as follows:

Loy pr (%Y, 7. T, X)
= FX) +g¥) + yh(x) + p21h2<x> +Tpy) + ”22 PA)

B

5 |AX + By — b||°.

+ (A, Ax+ By — b) +

We can use the following ADMM to solve Problem (3.95) with O (11() convergence
rate [6]:

x*1 = argmin Ly, . p(X, yh, vk, Th oAk, (3.96a)
X

Y = argmin L, ,, sy, y%, 7540, (3.96b)
y

Y =y 4 o, (3.96¢)

3.7 The Case of Nonlinear Constraints 105

o = 2k 4y pyF D, (3.96d)

A,k+1 — xk +ﬁ(AXk+1 +Byk+1 _ b) (3966)

We present the above method in Algorithm 3.13

Algorithm 3.13 ADMM with nonlinear constraints
Initialize x°, yo, yo, 79, and A9,
fork=0,1,2,3,--- do
Update xk*1, yk+1 pkt1 okl and A4+ by (3.96a)-(3.96e), respectively.
end for

Theorem 3.18 Suppose that f(x), g(y), ho(X), and po(y) are all convex. Then for
the above ADMM, we have

. . C 2/C I
G+ g3 — f(x) — gy <
| f gy f gyl 2K+ T JBEK + 1)
23/Cly*| 23/C ¥
VoK +1) /(K + 1)
24/C
|ARKH 4+ BFEH! —p|| < v ,
VB(K +1)
hERETY) < 2ve ,
VPi(K +1)
. 2./C
pFEth < ,
Jp2(K + 1)
where
1 K+1 1 K+1
K+l — ko oK+l _ k d
X K+1k§x’ y K—i—l];y’ an

1 1 1
C= IN=2 1P+ °—yH%+ =9+ BIBy’ — By*|*.
B o1 02

Proof Similar to Lemma 3.3, we have the following properties:
0 c af 1) + ATAK + BAT (AXFH! + By* — b)
+yk8h(xk+1) + p1h(Xk+1)8h(Xk+1),
0 € 9g(y**!) + BTAX + BT (Ax* ! + By* ! —b)

106 3 ADMM for Deterministic and Convex Optimization

+tfap) + pp(F T Hap Y,
0 c of (x*) + ATA* 4+ y*ah(x*),
0 € dg(y") + BT A" + *op(y"),

Ax* + By* = b,
h(x*) =0,
p(y") =0,

where (x*,y*, y*, t™, 1*) is a KKT point. Then there exists
VA € bty and Vp*) € apyth,
such that
ViE) eaf ™) and Ve € 95",

where

G rk+) = —ATAK — BAT (AX! + By* — b)
L R — py (TR
_ CATARFL | BAT (ByF — Byk) — kI,
Gty = —BTAk — BBT (Ax! + By —b)
— U p* Y — pp YV
_ _BTARH kIS k).

Similar to Lemma 3.4, we have
(@g(yk+1)7 yhHl y>
_ (xk+1’ By +! — By> _ gkl <@p(yk+1)’ yhrl y>
and
(@f(xkﬂ)’ <kt _ X> + <@g(yk+1)’ yhrl y>
— <)‘k+17 AXET! 4 Byf ! — Ax — By> +/3<Byk+1 — Byk, AxkH! - Ax>

e (@h(XkJrl), xk+1 _ X> _ Kkl <@p(yk+1)’ yirl y>

3.7 The Case of Nonlinear Constraints 107

% _ (Xk+1’AXk+1 By — Ax— By> ~|—ﬂ<Byk+1 — Byk, AxkH! - Ax>
=7 (6 — o) = 7 (Y - p®)) (3.97)

where we use the convexity of # and p (h and p are convex since ko and pg are
convex) in %
Letting x = x* and y = y* in (3.97) and adding

(17, AXHT 4 By = b) 4y) 4 2 pyE)
to both sides of (3.97), similar to Lemma 3.5 we have
(@f(XkJrl)’ <k _ X*> 4 (@g(ykJrl), yhH y*> + <x*’ AxFH ByFH! b>
oy R 4+ T pyF
% _ (xk+1 0, AxETL 4 ByRt! b> +B (Byk+1 — Byf, AxkH! - Ax*>

_ (yk+1 _ y*)h(xk-'rl) _ (Tk+1 _ T*)p(yk+1)

1 1 1

2P 2 2
p p p
+, By — By |12 — | IIBy**! — By"|* — By — By"|)®

+ <Byk+1 _ Byk, Akt xk>

_ (yk+1 _)/*)h(Xk+1) _ (Tk+1 _ T*)p(yk+1)

b 1 1 1
2p 2p 2p
p B p
+ . IBy —By*||> = By — By*|> — By — By*|?
2 2 2
4 <Byk+1 _ By Akt xk>
1 1 1
201 2p1 2p
+ 1 (Tk _ _L_*)Z _ 1 ('Ck+1 _ _L_*)Z _ 1 (Tk+1 _ _[k)z’

20 20 20

108 3 ADMM for Deterministic and Convex Optimization

where we use h(x*) = 0 and p(y*) = 0 in %, YA = kK prh(xk T, ok =
™™ + pop(y**1), and Lemma A.1 in L Thus, using the convexity of f and g, we
have

FEED + M) — £) = gv") + (W AR 4 ByFH!)
+ y*h(xk+1) + _L_*p(yk+1)

1 1

= 28 28
B B
+°, IBy" —By*|I* — _ IBy"*! — By"|?
L 2 L 2 L k2
+ v =y - (2 0 " =D
201 2p1 2p1
1 k %32 1 k+1 *\2 1 k+1 kN2
+ (T =77 = @ =TT = @ =15
202 2p2 2p2
where we drop
1 B
(B K+l _gyk gkl xk> . y AR Ak 2 = 0 IBy*! — Byk|2 <0

by 2 {a,b) < ;lal* + BIb]?.
Note that Lemmas 3.1 and 3.2 still hold for Problem (3.95) with minor
modification. Similar to Theorem 3.3, using the convexity of f, g, A, and p, we

have
FEH + G5 = Fx) =gy + (1 AKK T 4 B —b)

+y>kh(XK+1) + T p(yK+1) < Z(K + 1)

INH -t < VBe, KT =yt < Ve, 1K = < VG,

23/C

||A"K+1 _I_B"K+1 b” <
VBK + 1)

and

K
1
hAKJrl < h k+1
(x)_K+1k§_0 ")

K
_ 1 k+1 k
T K+ 1) kZ:OW v

References 109

1
= CARRET!
p1(K +1)
1
< (IVO—V*I+IVK“—V*I>
p1(K +1)
2/pC
T (K41
Similarly, we also have p(FX+!) < 2VPC The proof completes. O
p2(K+1)
At last, we extend to solving the following generally constrained convex problem
m
min) f; (),
i=1
s.t. hi(x) <0, ie€[m],
Ax =b.

Reformulate it as the following problem

m

min ((X7),

{Xi%,z Z;fl(Z
=

s.t. hi(x;) <0, ie€[m],

I 10---0 0

I 0I---0 X1 0

AEE EEEEN Il B

I 0001\, 0
n

A 0000 b

We can use ADMM to solve it, where we solve the first subproblem with
(T, ... xI)T, and then solve the second subproblem with z. Note that the first
subproblem can be decomposed into m subproblems in parallel.

References

1. C. Chen, B. He, Y. Ye, X. Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent. Math. Program. 155(1-2), 57-79 (2016)

2. D. Davis, W. Yin, Convergence rate analysis of several splitting schemes, in Splitting Methods
in Communication, Imaging, Science, and Engineering (Springer, Berlin, 2016), pp. 115-163

3. W. Deng, W. Yin, On the global and linear convergence of the generalized alternating direction
method of multipliers. J. Sci. Comput. 66(3), 889-916 (2016)

110

4.

5

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

3 ADMM for Deterministic and Convex Optimization

J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Math. Program. 55(1), 293-318 (1992)

. D. Gabay, Applications of the method of multipliers to variational inequalities. Math. Appl.

15, 299-331 (1983)
J. Giesen, S. Laue, Distributed convex optimization with many convex constraints (2018).
ArXiv:1610.02967

. B. He, X. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating directions

method of multipliers. Numer. Math. 130(3), 567-577 (2015)

. B. He, L.-Z. Liao, D. Han, H. Yang, A new inexact alternating directions method for monotone

variational inequalities. Math. Program. 92(1), 103-118 (2002)

. B. He, M. Tao, X. Yuan, Alternating direction method with Gaussian back substitution for

separable convex programming. SIAM J. Optim. 22(2), 313-340 (2012)

B. He, X. Yuan, On the O (1/t) convergence rate of the Douglas-Rachford alternating direction
method. SIAM J. Numer. Anal. 50(2), 700-709 (2012)

B. He, M. Tao, X. Yuan, A splitting method for separable convex programming. IMA J. Numer.
Anal. 35(1), 394-426 (2015)

B. He, S. Xu, X. Yuan, Extensions of ADMM for separable convex optimization problems with
linear equation or inequality constraints (2021). Arxiv:2107.01897

M. Hong, Z.-Q. Luo, On the linear convergence of the alternating direction method of
multipliers. Math. Program. 162(1-2), 165-199 (2017)

H. Li, Z. Lin, Accelerated alternating direction method of multipliers: an optimal O(1/K)
nonergodic analysis. J. Sci. Comput. 79(2), 671-699 (2019)

H. Li, Z. Lin, Y. Fang, Variance reduced EXTRA and DIGing and their optimal acceleration
for strongly convex decentralized optimization (2020). Arxiv:2009.04373

Z. Lin, M. Chen, Y. Ma, The augmented Lagrange multiplier method for exact recovery of
corrupted low-rank matrices (2010). ArXiv:1009.5055

Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive penalty for low-
rank representation, in Advances in Neural Information Processing Systems (2011), pp. 612—
620

Z. Lin, R. Liu, H. Li, Linearized alternating direction method with parallel splitting and
adaptive penalty for separable convex programs in machine learning. Mach. Learn. 99(2), 287—
325 (2015)

G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in Interna-
tional Conference on Machine Learning (2010), pp. 663—670

R. Liu, Z. Lin, Z. Su, Linearized alternating direction method with parallel splitting and
adaptive penalty for separable convex programs in machine learning, in Asian Conference on
Machine Learning (2013), pp. 116-132

Y. Liu, X. Yuan, S. Zeng, J. Zhang, Partial error bound conditions and the linear convergence
rate of the alternating direction method of multipliers. SIAM J. Numer. Anal. 56(4), 2095-2123
(2018)

C.Lu, H. Li, Z. Lin, S. Yan, Fast proximal linearized alternating direction method of multiplier
with parallel splitting, in AAAI Conference on Artificial Intelligence 68 (2016), pp. 739745
C. Lu, J. Feng, S. Yan, Z. Lin, A unified alternating direction method of multipliers by
majorization minimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 527-541 (2018)

Y. Ouyang, Y. Chen, G. Lan, E. Pasiliao Jr., An accelerated linearized alternating direction
method of multipliers. SIAM J. Imaging Sci. 8(1), 644-681 (2015)

R. Shefi, M. Teboulle, Rate of convergence analysis of decomposition methods based on the
proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269-297
(2014)

M. Tao, X. Yuan, Recovering low-rank and sparse components of matrices from incomplete
and noisy observations. SIAM J. Optim. 21(5), 57-81 (2011)

H. Wang, A. Banerjee, Bregman alternating direction method of multipliers, in Advances in
Neural Information Processing Systems (2014), pp. 2816-2824

References 111

28. X. Wang, X. Yuan, The linearized alternating direction method for Dantzig selector. SIAM J.
Sci. Comput. 34(5), 2792-2811 (2012)

29. W. Yang, D. Han, Linear convergence of the alternating direction method of multipliers for a
class of convex optimization problems. SIAM J. Imaging Sci. 54(2), 625-640 (2016)

30. X. Yuan, S. Zeng, J. Zhang, Discerning the linear convergence of ADMM for structured convex
optimization through the lens of variational analysis. J. Mach. Learn. Res. 21, 1-75 (2020)

Chapter 4)
ADMM for Nonconvex Optimization Shethie

In this chapter, we introduce ADMM for nonconvex optimization. We first introduce
the convergence of Bregman ADMM for the general multi-block linearly con-
strained problems under mild assumptions, then we introduce a proximal ADMM
with exponential averaging that imposes no assumptions on the linear constraint. At
last, we introduce how to use ADMM to solve multilinearly constrained problems,
especially the RPCA problem.

4.1 Multi-block Bregman ADMM

Consider the following multi-block linearly constrained problem
m
T8y D S+ 5
1=

m
s.t. ZA,X,- +By=b, 4.1)
i=1

under the following assumption:

Assumption 1 Assume that f;, i € [m], is a proper lower semicontinuous (Def-
inition A.26) function and g is L-smooth. Both f; and g can be nonconvex.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 113
Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9840-8_4&domain=pdf
https://doi.org/10.1007/978-981-16-9840-8_4

114 4 ADMM for Nonconvex Optimization

Algorithm 4.1 Multi-block Bregman ADMM

Initialize x(l), e XSI, yo, and A0,
fork=0,1,2,3,.--- do

Update x]f“, oo xbEL kL and AT by (4.22)—(4.2¢), respectively.
end for

There has been a wide range of works to study the convergence properties of
ADMM for solving Problem (4.1) (for example, see [1, 6-8, 11, 12]). We introduce
the following multi-block Bregman ADMM which is presented in Algorithm 4.1:

xi T = argmin <f,-(x,~) + <)~k, A5X1>

Xi

2
+ g AN A +) AN+ By —b
J<i j>i
+ Dy, (Xi, Xf)>, fori € [m] sequentially, (4.22)

m 2
> AT +By-b

i=1

y**! = argmin (g(y) + (Xk, By> + p
y 2

+ Dy (y, yk>), (4.2b)

m
A=Ak 4B (Z AixET o Byf L b)) (4.2¢)

i=1

Similar to the linearized ADMM in the convex case (see Sect. 3.2), we can choose
suitable ¢; such that each subproblem can be solved easily. For example, let

L+ BB B
gow =" ZIylI* =g - IByl?,
then the y update step reduces to (see (3.36))
1
yhHl = ZVyL,g(XkH,yk,xk),

L+ BBl

4.1 Multi-block Bregman ADMM 115

where Lg is the augmented Lagrangian function:

Lpx.y. 1) =Y fi(xi) +gy) + <x, > Aixi +By — b>

i=1 i=1
2

ﬂ m
+5 ZAixi+By_b

i=1

s

in which we denote x = (XIT, cee, X,E)T. We further denote A =[Ay, --- , A,].

Under Assumption 1 and the surjectiveness of B, i.e., [BTA|| > o ||A|| (6 > 0),
the above Bregman ADMM needs 0(512) iterations to find an e-approximate KKT
point, as shown in the following theorem.

Theorem 4.1 Assume that Assumption 1 holds, there exists o > 0 such that

IBTA|l = o||A|l for all A, and ¢; is p-strongly convex and L;-smooth with p >
21572
12(L02-|/—52L0), i =0,---,m. Suppose that the sequence {(Xk, yk, xk)}k is bounded and

YLy fi(xi)+g(y) is bounded below with bounded (X, y). Then Algorithm 4.1 needs
0(512) iterations to find an e-approximate KKT point (x**1, y*+1 A1) Namely,

m
ZAin'C—’_l + Byk+1 —b
i=1

< 0(e),

Ve + BIAM | < 0(e), and

dist(—A,.Tx"“, af,»(xf.‘“)) < 0(e), Vielml

Proof From the first step of the algorithm, we have

j<i?

Lg (x’/‘;l X'j>,-, A Xk> + Dy, (xf“, Xf‘) <Lg (x’“rl x’jzi, vk, k"))

Since Dy, (xf“, xf) > ’2)||Xi.“rl - Xi.‘||2 (Lemma A.2), we have
Pkl k)2 k1 k k gk k1 _k k 4k
2||X; —x;I" < Lg (qu.,szi,y ,A) —Lg (xjgl.,xj>l-,y LA
Summing overi =1, --- , m, we have
P

5 I — xF|12 < Lo, yF, A% — LgxFHL yk, Ak,

Similarly, for the second step, we have

0

5 Iy — ¥R < Lp*HL yR AR — Ly yFT Ak,

116 4 ADMM for Nonconvex Optimization

From the update of A, we have

1

B

Summing up, we have

Pkl k2, Puokel k2 Lokt kg2
X —X — — A —A
) I <+) ly [5 I I

< Lg(xF, ¥k, 0%y — L, yA it Ak, (4.3)

y

On the other hand, from the optimality condition of the y update, we have
0 = Ve(y**!) + B A* + BT (AXH! + By —b) + Voo (v) — Vo (yH)
= Vet + BT 4+ Voo (y*) — Vo vh). 4.4)
Thus we have
o2 AR k12
< BT =257

= [Ve = Ve M) + Voo — Vo)

2
~(Voor) = Voo)|
<3IVe(y* — Ve)I? + 311V (v 1) — Voy") I
+ 3| Veo(y*) — Voo (y* ~HII?
< 3(L* + LPHIYT — yFI1? + 3L Iy* — ¥y 1% (4.5)

Adding (4.3) and (4.5), we have

P k+1 k2 | Pook+l kp2 o Vg ket k2
— — ARy
2|IX x| +2||y vyl +ﬂ” Il
6(L>+ LY i1 k2, OLG ok ieip2
+ 28 Iy =yl +62ﬂlly -y s
Defining

2
k __ k ok 1k 6LO k k=12
@ —Lﬂ(x,y,k)Jrazﬂlly AN

4.1 Multi-block Bregman ADMM 117

we have
Pkl xk 2 4 (P _6L7+ 12L(2)) Iy = yER + 1 I k2
2 2 o?p B
< ok _ okt

From the assumptions that {(x, y*, A¥) 1k are bounded and Yol fitxi) 4+ g(y) is
bounded below, we know that ®* is lower bounded by some ®*. Summing the above
inequality overk =0, --- , K, we have

e p 6L>+12L2 1
min { ”Xk-‘rl _ Xk||2 + (_ 0 ”yk-'rl _ yk”2 + ﬁ ”)"k-i—l _ Xk||2

k<k | 2 2 o?B
CDO—(D*
<
- K+1

Thus, the algorithm needs 0(512) iterations to find (x**1, yk*1, A%+1) such that

k1 _ ok e+l k e+l _ gk
I x| <€, Iy —yll<e and AT -2F <e

From (4.4), we have

IV 1) + BTAM| = Vo (7"t — Vo)

< Lolly*™ —y*I < 0(e). (4.6)

From the update of A, we have

m
> AT+ Byt —b
i=1

1
=4 A=Ak < o).

k+1

From the optimality conditions of X;, we have that there exists v Ji(x;

af; (xf“) such that

) €

VAT +AT [M+ [D AT+ Axd +By b

Jj<i Jj>i

+ Vi X — v (xb) = 0.

118 4 ADMM for Nonconvex Optimization
Thus, we have

Hgﬁ(xf;ﬂ) +Aflk+1“

< IVt = Vi xDl + B AT | DA —xh) + B -y

Jj>i

< 0(e).

O

Remark 4.1 A crucial step in the above proof is to bound the dual variables by
the primal ones in (4.5), which is established via the surjective assumption of
IBTA|| > o||A|l such that we can get [|[BT AWKt — ARy > oAk — AK|. [12]
replaced |BTA| > oA by the assumption of Im(A;) € Im(B). In this case, we
have

A k=g (Z AxET 4 ByFtT b) € Im(B).

1

Suppose that the economical SVD of B is B = UX V. Then we may write A*T! —
Af = Ua. So

BT A+ a9)1? = [VEUT Ua |
= || Ze|)?
> A+ (BBY) ||
=y BBT)[AFF — a7, 4.7)

where A, (BB”) is the smallest strictly positive eigenvalue of BB” . As a result, we
do not need B to be of full row rank (i.e., [BTA| > o ||A|| for all X).

On the other hand, when we only consider the problem with one block of
variables, that is, f; = 0, Vi, the assumptions of Im(A;) € Im(B) can be further
removed since AXT! — AK = BBy t! — b) € Im(B) always holds.

In Theorem 4.1, we assume that the objectives are proper and lower semicon-
tinuous such that the subdifferential (Definition A.28) is well defined. We assume
that the objective is coercive (Definition A.27) over the entire space. [12] used
a weaker assumption that the objective is coercive only over the constraint set
{x,y)|Ax + By = b}.

4.1 Multi-block Bregman ADMM 119

When we remove the Bregman distance in the update of x;, we should assume
that the smallest eigenvalue of Al.TA,- is positive and 8 should be chosen large
enough such that Lg(x,y, L) is u-strongly convex with respect to x; (assume that
fi is smooth if necessary). Then for the first step, we have

Ly (Xk+1 <k yk’xk) —Lg (Xk+1 <k yk’lk) > Hxkrt Z gk

j<i>Tjziv j<ic Rj=i = o 1% i

dueto 0 € Bxing(ka xk ,yk,lk).

j=ivXj=i

4.1.1 With More Assumptions on the Objectives

As discussed in Remark 4.1, the assumption on the linear constraint, either [|[BTA|| >
o|A|l or Im(A;) € Im(B), plays a critical role in Theorem 4.1. Sometimes such
conditions may not be met. In this section, we introduce the convergence proof
with more assumptions on the objectives instead. We further make the following
assumption.

Assumption 2 f;’s and g are all L-smooth.

Note that in Theorem 4.1, we only assume that g is smooth, which allows f;
to be nonsmooth and can be applied to problems such as sparse and low-rank
optimization.

Then we have the following convergence theorem.

Theorem 4.2 Assume that Assumption 2 holds and ¢; is p-strongly convex and

L;-smooth with p > 4maX{C1ﬁJ;\C+2’C3+C4}, i =0,1,---,m, where Ay is the smallest

strictly positive eigenvalue of [A, B][A, B]T,

m
c1 =517 +5L5 + 1087AI3) IA:ll3,

i=1

m
¢ =5Lp + 10871A15 D A3,

i=1

m
c3 =3L% +3L5+ 1087[B[3) A3,

i=1
m
ca =3L5+ 108*|BI3) A3, and
i=1

Lmax = max{L;,i € [m]}.

120 4 ADMM for Nonconvex Optimization

Suppose that the sequence {(x¥, yk, A are bounded and Yo fixi) + g(y) is
bounded below with bounded (X, y). Let A0 = 0. Then Algorithm 4.1 needs 0(512)

iterations to find an e-approximate KKT point (x*+t1, y**1 21y Namely,

m
ZAIX{'C+1 +Byk+1 _ b
i=1

< O(e),

IVs ") + BT < 0(e), and
HVﬁ(Xif“) +ATxk+1H < O(e).
Proof Recalling (4.3), we want to bound [|AXT! =% 12 by ||xk+! —xk||2 and ||y* ! —

y*|I2. From (4.2c) and A° = 0, we know that Ak belongs to the linear span of [A, B].
Thus, similar to (4.7) we have

< 1A, B)" 5 —a%))?
m

= > IAT A=A P 4 BT M Ak (4.8)
i=1

From the optimality condition of (4.2a), we have

0=Vixth + AT [+ 8 ZA,X’;H +ZA,X’; +By* —b

Jj<i Jj>i

+VG () — Ve (xb)

= Vi + AT AT | YA o8 - XD +BGF -y

j>i
+Vi (x{ 1) — Vi (x).
Thus, we have
IA] QST — k)2
= H [V - vaah]

+BAT | DA —x{h + BGF — v

Jj>i

4.1 Multi-block Bregman ADMM 121

—BAT | DA =) + B -y
Jj>i
2

+[Ta Y = 9o] - [Vaixh) - Vi)]

< 5|V - v)12

2
+5B2IA3 | DAk — X £ Bk — yF)
Jj>i
2
+5B2A: 12 ZAJ(X]TI _X§)+B(yk71 —yh
Jj>i

+50Vei (T — Vi (XD + 51 Vi (x}) — Vi (xi |12
a —
<s (L2 n Ll?) I = X2 52| xk — Xk
+10821A: 13 (IABIK = X1 + IBI3 Iy - ¥)1)

+ 10871413 (IABBIKE — %17 + IBI3 Iy —¥*"17).

a
where in < we use

2
k k+1 2 k k+1)2
AR =X <A AR Y IR — X

j>i j>i
<IAI I —x)1%.
Similarly, from (4.4) we can deduce
BT WK+ — 2%y |2
<3 (L2 +L5) I =y 1P + L3y - v (49)
Combining (4.8)-(4.9), we have

m
< <5L2 + 5o+ 1087A15) ||A,»||%) Ix — k)2
i=1

122 4 ADMM for Nonconvex Optimization

m
+ (SernaX + 1082|All5 Z ||Ai||%) Ixk — xk=1)12

i=1

m
+ (3L2 +3L5+ 108%BI3 Y ||A,-||%) Iy —yo)1?

i=1

m
+ (3L6 +108%|BII3 Y ||A,»||%) Iy* —y 1)
i=1

k+1 2

k2 k_ k-1
=cifx = x'I" +e2fx" — x|

+eslly T — yEIE A+ callyt — 2

Together with (4.3), we have

P 2 1
I — x5 2 Ty — R Ik - Ak

2 2
< Lp(xb, ¥k a0 — Ly yf bt
21 g k2 263 gl k2
+ X —x*)1* + Iy — ¥
By B+
20 g k=12, 2C4 g k—1,2
+ X" —x"" 7|17 + ly" =y —II°.
B+ B+
Defining
2
O = Ly Y A+ T (el xR+ callyt - ¥R,
By
we have
p 2c1+c2) P 2(c3+cq)
_ It —xk2 4 [2 - Iyt — k)12
2 By 2 By
1
B
< ok — pFt!,

Then similar to the proof of Theorem 4.1, we have the conclusion. O

4.2 Proximal ADMM with Exponential Averaging 123
4.2 Proximal ADMM with Exponential Averaging

In the previous sections, the Bregman ADMM (4.2a)—(4.2c) uses the Bregman

distance Dy, (x;, xf.‘), which results in the proximal term ’52 Ix —xX|2. In this section,
we introduce another proximal ADMM proposed in [13], where the proximal term

g/ Ix; — zﬁ.‘ |? is used instead, in which zﬁ.‘ is an exponential averaging of x?, s xﬁ.‘.
Consider the following general problem
min f(xla“' axm)a
X1, X
m
S.t. ZA,’X,’ = b,
i=1
with a non-separable objective. Denote
T \7
x:(xl,-n,xm) and A=1[A{,---,A,l
Define the following proximal augmented Lagrangian function
_ p 2, P 2
P(x,z,1) = f(x) + (A, Ax —b) + 2IIAX—'DII + o, Ix =z
The method proposed in [13] consists of the following steps:
x];"’l =xl;. —aV;P (x”f“, ,xljfﬂ, xl;., ‘.- ,xln‘1, Z, Xk) ,
for j € [m] sequentially, (4.10a)
A A o (AX ! — b, (4.10b)
7 =2F + o3 (xFT! — 7). (4.10¢)

From the last step, we have
A+ — (1— a3)zk + asxFt,
which gives
k
= a1 —) X 4 (-)

t=0

The proximal term g Ix — z||? in P(x, z, A) makes x**! not deviate too much from
zF. The method is presented in Algorithm 4.2.

124 4 ADMM for Nonconvex Optimization

Algorithm 4.2 Proximal ADMM with exponential averaging

Initialize x(l), e XSI, 20, and A°.
fork=0,1,2,3,--- do

Update x]f“, oo xbFL AR+ and 254! by (4.102)—(4.10c), respectively.
end for

For the convergence proof, define
. 1% 2
M(z) = (_) 4.11
(z) = min f(x)+ 5 Ix—z| (4.11)

* _ : o _ 2
X' () = argmin (£ + 5 Ix = 21?)

d(z,\) = min P(x,z,),
X

x(z, A) = argmin P (X, z, A),
X

and the potential function
oF = p(xk, 2K AF Y — 24 A + 2M (2.

We want to prove that ®F decreases sufficiently in order to establish the conver-
gence.
We first give several error bounds in the following three lemmas.

Lemma 4.1 Assume that f is L-smooth with respect to X. Suppose p > L, then for
Algorithm 4.2 we have

0

@) —x @ s Tt =2, (4.12)
0

Ix@ 25 —x@* L ah = Tt =2 (4.13)
c

Ix(z, M) — x*(2)1| < oL IV = 2@, (4.14)

where & = || A2 and *(z¥) is the optimal dual variable of Problem (4.11).
Proof Define

g(x.2) = f(%) + Iaxp(X) + ‘z’nx —)

with

0, if Ax =b,

Tax— =
Ax=b(®) {oo, otherwise.

4.2 Proximal ADMM with Exponential Averaging 125

Then g is (o — L)-strongly convex with respect to x and x*(z) minimizes g(X, z).
So by (A.7) we have

SO, 2 — g @, A = P e -
On the other hand, we have
g(x* (2, 2" — g(x* (@), 2
= g(x*(2"), 7" — g(x* (@), 2
_ (g(x*(szrl), zk+1) _ g(X*(ZkJrl)’ Zk))
+ (80 @), 24 — g (@),)
= g(x*(2"), 7" — gx* (@), 2

Jo
=0 (2 =2 @) w1 -)

0
e G O R Lan S P

= g(x"(2), 2 — g @), 2 + p (A - X @ - x @)

—L
== T E) - @+ p (A -2 @) - x @),

So we have
(= DIX @) = x*@)|? < p (85 =2 x @) - x*@)).

By the Cauchy—Schwartz inequality (Proposition A.1), we have (4.12). Similarly,
we also have (4.13) by replacing g(x, z) with P(x, z, A).

At last, we consider (4.14). By checking the KKT conditions, we know that
x*(zF) is a minimizer of P(x, zF, A*(zX)). Since P (x, 2, A*(z)) is (0 — L)-strongly
convex with respect to x, the minimizer is unique. So x*(ZF) = x(zF, A*(Z5)).
Therefore, we only need to prove

Ix@t, A6 —x@ @) < LI =@l
b

We write A* for A*(z¥) in the remaining of this proof for notation simplicity. Since
P(x,z,)) is (p — L)-strongly convex with respect to x and x(z, A) minimizes
P(x,z, 1), by (A.7) we have

— L
P(x(Z, 1), 26, 06) — P(x(zk, A%y, 25 a%) > P 5 Ix(z*, A*) — x(zF, A0y ||.

126 4 ADMM for Nonconvex Optimization

On the other hand, we have
P(x(zF, 1), 25 A%) — P(x(z, AK), 2, aK)
= P(x(z*,1%), 25, A) — P(x(z, AK), 25, 0%)
- (P(x(zk, Ay, 2k Ak — P(x(ak, Ak, 25, x*))
+ (P(x(zk, 29, 2500 — Px(2F, A%, 25, x*))
= P(x(z*,1%), 25, 1) — P(x(zF, AK), 25, 0%)
- (Ax(zk, Ay — Ax(ZF, %), Ak — x*)
P

— L
-, Ix(z", A*) — x(z*, 15) |12

_ (Ax(zk, Ay — Ax(ZE, A%), Ak — x*).

IA

So we have
(p — L)Ix(Z*, A% — x(@2*, 49|17 < &|x(2*, AF) — x(@F, 251k — 1),

which gives (4.14). |

Lemma 4.2 Assume that f is L-smooth with respect to X. Suppose p > L, then for
Algorithm 4.2 we have

1+ a1y/2mL? + (m — Hmp2o* I xk

I —x(2, A9 <) @)
ai(p—L)
where 0 = max{||A;ll2,i € [m]}.
Proof The update of X; can be rewritten as
xl;H = xlj‘. —alij(xk,zk,Xk)

a1V Pk, 2E A — v P ,x’;ﬂ,x’;,--- xk 2k Ak,

So
" 2

ar |32V Pek 2t a0 v PG 20|

j=1

= ka+1 —xk —l—quxP(xk, zk, Xk)“ .

4.2 Proximal ADMM with Exponential Averaging 127

On the other hand, we have

m
3| U Y
j=1
m
=Y Vi) = Vet X X))
j=1
2

_ﬁATZA <k+1)

m j—1 j—1
<202) X x| +2ﬁ2042(1 DY I —xf)?
j=li=1 i=1

< [2mL?* 4+ (m — DmpB?a*]|Ix*+ — x4||2.
Thus
oq\/ZmLz + (m — DmB2o4|Ix* ! — x|

> X — xk o v P, 2 A0

> ar [VP8, 250 | — X — X (4.16)
Since P(X, z, A) is (p — L)-strongly convex with respect to X, we have

[Vx P(xE, 28, A5) || = [V P(xE, 25, 0F) — Ve P(x(2F, 0%, 28, A5 |

(p — L)Ix* —x(z*, 19|,

Vs

where % uses (A.9). So we have (4.15). |

Lemma 4.3 Assume that f is L-smooth with respect to X. We have the following
dual error bound for Algorithm 4.2:

2 ~2\2
disth, A*@) < 0 L J;p_JZﬁG) Ax(z 1) — D], (4.17)

where AN*(z) is the solution set of the dual problem of Problem (4.11), and 6 is the
Hoffman’s constant defined in Lemma A.3, which only depends on A.

128 4 ADMM for Nonconvex Optimization

Proof The KKT condition of Problem (4.11) is

Vf(x*(2) + p(x*(z) —2) + ATA*(z) = 0,
Ax*(z) = b,

where A*(z) is any dual variable in A*(z). From the definition of x(z, 1), we have
Vf(x(z, 1)) + p(x(z,A) —z) + ATA + BAT (Ax(z, 1) — b) = 0.
Consider the linear system:
AT @) = - [V (X" @) + p(x*(2) — 2)]. (4.18)
From the Hoffman’s bound in Lemma A.3, we have

dist(A, A*(2))?

= min 1A — @)
A(z) satisfying (4.18)

<O |ATA + [V @) + p(x*(2) — 2] |I?

=0 |[V 7 (x(z. 1) + p(x(2. 1) —) + BAT (Ax(z, 1) — b) |
~ V& @) + px* @) -)] |

0> (L + p + B57)*|Ix(z, 1) —x*@)|I*

02(L + p + p5%)?
p—L

x (Vf(x(z,) + p(x(z,X) —2) — Vf(x*(2)) — p(x*(2) — 2),
x(z, }) — x*(2))

_92(L + p + B52)?
p—L

A=

NS

x <ATx + BAT (Ax(z, 1) — b) — ATA*(2), x(z, 1) — x* (z)>

2 ~2\2
__ & t)p_JrLﬁ“) (Ir = x*@). Ax(z. 1) — b) + BllAX(z, 1) — b?)
_ 6Lt p o+ B

b L A —A*@ [IAx(z, ») — bl

4.2 Proximal ADMM with Exponential Averaging 129

b
where % uses the (L 4+ p + ﬂaz)-smoothness of P(x,z,A) with respect to X and <
uses the (p — L)-strong convexity of f(x) + ’2) Ix — z||2 and (A.8). Choosing A*(z)
to be the point such that |A — A*(z)|| = dist(A, A*(z)), we have (4.17). O

Next, we give the estimates on the changes in P, d, and M.

Lemma 4.4 Assume that f is L-smooth with respect to X. Let

1

O<ar < , ap>0, O<a3<1, and > L.
L+ Bc24+p p

For Algorithm 4.2, we have
P(Xk, zk7)‘kfl) _ P(Xk+1, ZkJrl7 Xk)
1 Iy
> X xR 2 T — 2 - aoAXE - b)), (4.19)
2001 203
d(Zk+l, xk) _ d(zk, xk—l)

> @ <Axk — b, Ax(z",) — b>

+ ‘2) (zk“ — 2, gk ox (@, xk)>, (4.20)
M(Zk+1) _ M(Zk)
< ,O(Zk+l _ Zk, Zk _ X*(Zk)> + 1(2) (o . + 1) ||Zk+1 _ Zk||2. (421)
0 —

Proof From the update of A, we have
P(xF, 25 A — PxF 2505 = —anl|AXF — b2

Since P is (L+ B0+ p)-smooth for each x j» by (A.4) and considering that updating
X; is a standard coordinate gradient descent, we have

k+1 k+1 ko ok k k 9k
P(Xl s T 7Xj_lvxjsxj+11"'1xmsz 1x)
k+1 k+1 Jk+1 k k k 4k
_P(Xl 7"'7Xj_lvxj 7Xj+11"'1xm7z 7x)
o (KL kL ok ok ko ok qk) kL ok
2—<V/P(x1 , XD XX J Xy 20, A),xj xj>

X

_L+Bat+p ka+1 _ kH2
2 J J

130 4 ADMM for Nonconvex Optimization

2
_ 1 ka+1_ kH2_L+ﬂa +p ka_+1_ka2
2 J

op 17 i J
- b
= 20y 177 J
Summing up fori =1, - - - , m, we have

1
PO, 2500 = PO 20 = T xR,
ol

From the update of z, we have
P 2K Ak — PRt A Ak
X

k+1 2 k+1 k412
=72 - R)

_F (k
=, l |
_ /; <Zk+1 — gk oxktl gk Zk+1>

p (2
a3

O k41 k2
> |2 — 28
2003

for ¢z < 1. Summing up the above three inequalities, we have (4.19).
Similarly, we have

d(@*, A% —d@* A
= P(x(z5, A%, 25 A% — P(x@* Af), 2R A
> P(x(z5, AF), 25, A% — P(x(2F, A%), 2k, A%
_ <x’< — k1 Ax (K Ak — b>
— (Axk — b, Ax(z", AF) — b>

and
d@ Ak — a2k
= P(x(Z*T1, 00, 25T 00 — px(b, AN, 25, A5

v

4.2 Proximal ADMM with Exponential Averaging 131
P k+1 4k k412 k+1 4k k)2
= 7 (@ 2P - xaN — 22)

/2’ <zk+1 — 2k, 2 4 —ox(d xk)>.

Adding them, we have (4.20).
To prove (4.21), we first prove

VM) =p(z—x"(2)). (4.22)
Indeed, define
o) =1 Jzl> = £ —] Ix — 2] and
V@ = max p(x.2) = | |12l — M(2).
Then ¢ (x, -) is convex for each x € {x|Ax = b}, and

x*(z) = argmax @ (x, z)
Ax=b

is a singleton. So by Danskin’s theorem (Theorem A.1) and Proposition A.7, we
have that v (z) is differentiable and

VY (@) = Vi$ (X' (2), 2) = px*(2).

Thus VM (z) = pz — V(z) = p (z — x*(2)).
From (4.22) and (4.12), we have

14
”VM(Zk) — VM(Zk+1)|| <p <p_L + 1) ”Zk —Zk+1”.

So M(z) is p (pf L+ 1)-sm00th. Thus by (A.4), we have (4.21). 0

Now we are ready to prove that ®* decreases sufficiently.

Lemma 4.5 Assume that f is L-smooth with respect to X. Choosing o1, a2, and o3
appropriately and letting p > L, then for Algorithm 4.2 we have

OF — O = 6 (X - X2 2 — 2P 4 AXGE AN — b)) 423)

for some positive constant é.

132 4 ADMM for Nonconvex Optimization

Proof From (4.19), (4.20), and (4.21), we have

1 k+1 k2 P k+1 k2 k 2
> 20 [x* 7" — x| + 20 127" —z" || — a2 ||AX" — b||

+ 20 <Axk — b, Ax(z5, A — b>

+p (Zk+1 Y Y SEY 2x(ZH xk)>
+2,0(Zk+1—Zk,X*(zk)—Zk>—,0< lOL +1> ||Zk+1_zk||2
p [—

L k2 p p k+1 k2
= — — 1 +_
201 lIx X ||7 + 20 o oL + llz z|

— ar|AX — b|% + 20> <Axk — b, Ax(z", AF) — b> + ,o(zk'H _ 7,
Y | (x(zk+1, 25 — x(7, x")) 2 (x(zk, Ay — x*(zk)) >
Since
—2p (zkH —ZF x(Z*, 25 — x*(zk)>

P k+l k2 k 1k k2
>_c1”Z+ —z'||° — pcrllx(z", 1") — x*(z") |

~2
S Pkt g2 o Pk k)2
1 (p — L)?
b ~2 94 L ~2\4
L Pyt _grp o Pa0T LA PO k) — b,
1 (p—L)? (p—L)?

—2p (Zk+1 — 75, x@H AR — x (@, xk)>
> —2p| 2 — Zh) Ix @, A — x (@ A0
22

c
> — |z
p—L

k_gkt)2,
and
— || AX* — b))% + 20 <Axk — b, Ax(z5, 1K) — b>
= ar||Ax(ZF, A%) — b))% — aa || Ax (2", AF) — AxK|2

> a|Ax(ZF, A¥) — b|1? — 025 |x (2, %) — xF|I?

4.2 Proximal ADMM with Exponential Averaging 133

d
> ;|| Ax(ZF, AF) — b2

2420 [2mL? + (m — YmB0*]

— 00 X
af(p — L)?

s

K+l _ k2
I — x|

b
where we use (4.14) in % and (4.17) in > with k*(zk) chosen as the point such that

d
||Xk — AN = dist(A*, A* (X)), (4.13) in §, and (4.15) in >, and ¢; > 0 will be
chosen later, we have

oF _ k!
_ { 1 20,52 20057 [2mL* + (m — Hmp2o?] e

k2
- - l
201 ai(p — L)? (p—L)?

X

o p 3p
23 ¢ p-—1L
[pc1G204 (L + p + B52)*
+ o2 —

(o — L)t ymaﬁih—mﬁ

‘We choose
(p—L)? L+ B0+ p

1262(L + Bo? + p)’ 6 {1 + 452[2"1L2+(m*21)m/32‘74]} ’
(p—L)

é < min

o (p — L)%
3 (5 + j_ﬂzL) T 6p5204(L + p + BEHY

o3 < min

s

6p3520% (L + p + p52)*
2 =
(p — L)*

e[12625 1 }
a bl 9
Sl -0 L+ Bot+p

+51

where we also take the requirements on «;(i = 1,2,3) in Lemma 4.4 into
consideration. Then letting ¢; = 6«3, we can check that

1 20,52 20267 [2mL? + (m —)mB?o?]
201 aj(p— L) (b — L)
1 20752 [ZmL2 + (m — 1)mﬁ2a4]

s
~ 6oy (p—L)?

134 4 ADMM for Nonconvex Optimization

’ L+Bo%+p 465%[2mL* + (m — hYmp*o?] N
- 6 (p—L)? -
3p2 3p?

p P 3p o P 5 and

23 ¢ p—L=3a3_p—L_

B pci5 204 (L + p + B5H*t v 6035204 (L +p + B5H*

= =94,
2 (p — L)* 2 (p— L)*

where < uses ap < 28 < ai(p—L)* and i uses o] < 1 and ap < 26. So
= 2= 0= e = 1= Ligo2+p 2=
(4.23) is proven. |

Then we have the convergence rate result for Algorithm 4.2.

Theorem 4.3 Assume that f is L-smooth with respect to X. Choosing a1, a2, and
a3 appropriately and letting p > L, then Algorithm 4.2 needs 0(512) iterations to
find an e-approximate KKT point (X, L). Namely,
IAx —b] < O(e) and ||V f(x)+ATA| < O(e).
Proof Denote f* = minax—p f(x), we have M(z) > f*. So for any k we have
ok = (P(xk, £ AR —at, A’H)) + (M(zk) —d@, x"*l)) + M@
=M ") = f*.

Summing (4.23) overk =0, --- , K, we have

min {2 4 12— 2+ AxGE 35 b

< qDO_f*,
T8K+1)

Thus, we have

min fid b 12— 2 s — bl <€

after 0(512) iterations.

4.3 ADMM for Multilinearly Constrained Optimization 135

From (4.15), we have

AX* — b
< Ax(ZF, AF) — b|| + FlIx(Z", AF) — xF]|

o [1 + a1/2mL2 + (m — 1)m,3204]

||Xk+1 _
ai(p—L)

< |Ax(Zk, AF) — b|| + d

X
= O (e).
Since
Vi P(xk, 25, 0%) = v F(xF) + ATAR + p(x* — 25) + BAT (AxF — b),
from (4.16) and the update of z, we have
IV.£ () +ATAE
< IVx P, 2509 + plIx* — 24| + 5| AX" — b

1
< [2L ¢ n - 1)mﬁ204} I+ —x"
(o3]

1 ~
+p (a3 2570 — 25| + e — xku) + BF|AXE —b||

< O(e).

4.3 ADMM for Multilinearly Constrained Optimization

In this section, we introduce how to use ADMM to solve problems with multilinear
constraints in the form of XY = Z, where multilinear means that XY = Z is
linear with respect to the individual variables of X and Y, but nonconvex for X
and Y jointly. There have been a wide range of problems which can be modeled
with multilinear constraints, for example, non-negative matrix factorization [2, 5],
RPCA [3], and the training of neural networks [9, 10]. Gao et al. [4] gave a unified
proof for a family of nonconvex problems with multilinear constraints. To simplify
the description, we only introduce the convergence proof for RPCA to illustrate the
main proof techniques.

136 4 ADMM for Nonconvex Optimization
As introduced in Sect. 1.1, we consider the following model of RPCA:
in | (uR+ v Zih + “v?
min 101+ 1IVIF) + zlZlh + I1Y1I7],
UV.ZY |2 2
sit. UV4+Z-M=Y.
The augmented Lagrangian function is

1 j
Lp(U.V.ZY. A) = (U2 + IVIP) + ziz + 1P

B

5 JUV+Z—-M-Y|>.

+{A,UV+Z-M-Y) +

We can use ADMM to solve the above problem by alternating between updating
(V,Z) and (U, Y):

. 1
(VEHL zkhy = argmnin (2 IVIZ+ llZ]

1 2
+§HU"V+Z—M—Y’<+ﬁAk) (4.24a)

. (1 M
(UL YA = argmin (2||U||2 + Y|

U,Y
B k+1 k1 Ly 2
+2 UVt + Z —M—Y—l—ﬂA , (4.24b)
Ak+1 — Ak +ﬁ(Uk+1Vk+1 +Zk+1 _ M _ Yk+1). (4240)

The algorithm is presented in Algorithm 4.3.

Algorithm 4.3 ADMM for RPCA
Initialize U°, Y, and A°.
fork=0,1,2,3,--- do
Update X¥+1, YA+1 Uk vE+1 and AKH! by (4.24a)—(4.24c¢), respectively.
end for

We can prove the O (:2) iteration complexity of Algorithm 4.3.

4.3 ADMM for Multilinearly Constrained Optimization 137

Lemma 4.6 For Algorithm 4.3, we have
Lﬂ(Uk+l Vk+1 Zk+1 Yk+1 Ak+l)_Lﬂ(Uk Vk Zk Yk Ak)

1 1 TS

2 B
(4.25)
Proof From the optimality conditions, we have
1
0 — Vk-'rl + ﬂ(Uk)T (Ukvk+l +Zk+1 _ M _ Yk + ’BAk> , (426)
0oz + (U"V"+1 +Z MY+ Ak> , 4.27)
T

1
B
0= Uk+1 4 ,3 (Uk+lvk+1 4 Zk+1 M= Yk+1 4 ;Ak> (Vk+1)T
— UK 4 AR (vRHT | (4.28)
0= uY g <Uk+1vk+1 L7 MY 4 ;Ak>
= Y T — AR (4.29)
We can check that
Lﬂ(Uk, Vk+1, Zk+1, Yk, Ak) _ Lﬂ(Uk, Vk, Zk, Yk, Ak)
1 1
= _IVEEE = JIVEIR + 129 - o2k
2 2
+ (Ak’ UK(VAH! — vk 4 zkH! Zk>
B

+) ||Ukvk+1 + Zk+1 —M-— Yk||2 _ g

_ _;”Vk+l — VK2 = (Vk-i-l’ Vk> + <Vk+l’ Vk+1>

|UFVE + ZF — M — YX||?

+ _C”Zk+1”1 . T”anl +<Ak’Uk(Vk+1 _Vk) 4 Zk Zk>
B

2
—B (Uka“ +ZM M YR URVE + ZF M — Yk>

||Uk(Vk+l _ Vk) + Zk+1 _ Zk||2

+8 (Uka“ +ZM M= YR UV Lz oM Yk>

138 4 ADMM for Nonconvex Optimization

1
_ _2||Vk+1 . Vk”2 4 (Vk+1 — VK, Vk+1> + T”Zk+1”1 . TIIZk||1

B

_) ||Uk(Vk+1 _ Vk) + Zk+1 _ Zk||2

+ ﬁ<;Ak + UKV L zk 1 v Yk Uk(Vk—H _ Vk) +ZkH Zk>
a 1
< —2||V"+1 — VK12 (4.30)
and
Lﬁ(Uk+l, Vk+l’ Zk+l, Yk+l, Ak) _ Lﬂ(Uk, Vk+l’ Zk+l, Yk, Ak)
1 1 u 7
= Ukt2 — o2 yht12 _ Y¥ |12
L e [e

4 <Ak, (U/(+l _ Uk)Vk+1 _ Y/(+l + Yk>

+ 'g ||Uk+lvk+l + Zk+l - M- Yk+l ”2 _ §||Ukvk+l + Zk+l - M- Yk”Z
— _;”Uk+1 _ Uk||2 _ (Uk-‘rl7 Uk> + (Uk-‘rl7 U/(+l>

. /;”Yk+1 — Y2 = M<Yk+l,Yk> + M<Yk+l’Yk+1>

+ (Ak7 (UK gkyyhr! —ykl Yk>

B
2

-y <Uk+lvk+l 4+ ZF M — YR phvEL o zhtl v Yk>

||(U/(+l _ U/()V/(+l _ Yk+1 + Y/(”Z

iy <Uk+lvk+l 4 ZkHL M — YR Rtk gkl v Yk+1>

_ _;”Uk+l _UA2 + <Uk+l UK, Uk+l> _ /;||Yk+l — YA

B

) ||(U/(+l _ Uk)Vk+l _ Yk+1 + Yk ”2

4 M<Yk+1 _ Y/(Y/(+l> _

1
B

_ _;”Ukﬂ e +<Uk+1 _Uk’Uk+1> _ Z||Y"+1 T

P
2

iy < AK 4 URHIVRHL gkt p_ykL kel Ryl Coykl Yk>

+ m <Yk+1 _ Y/(7 Y/(+l> _ ||(U/<+l _ Uk)v/(+l _ Yk+1 + Yk ”2

4.3 ADMM for Multilinearly Constrained Optimization 139

4 <Ak+1, (U/(+l _ U/()V/(+l _ Yk+1 + Y/(>

b 1 %
< —2||U’€+1 - Uq)2 -) YA — k)2, (4.31)

b
where we use (4.26) and (4.27) in % and (4.28) and (4.29) in <. We also have
Lﬁ(Uk+1 Vk+1 Zk+1 Yk+1 Ak+1) _ Lﬁ(Uk+1 Vk+1 Zk+1 Yk+1 Ak)

Lk k2 T k+1 k2
= /3||A —A*F = 8 1Y - Y"|°. (4.32)

By adding (4.30)-(4.32) we have
Lﬁ(Uk+1 Vk+1 Zk+1 Yk+1 Ak+1)—Lﬁ(Uk Vk Zk Yk Ak)

1 1 2
<_ ||Vk+1 _ Vk||2 . ||Uk+1 _ Uk”2 Y ||Yk+1 . quz.
2 2 2 B

O

Theorem 4.4 Let 8 > 2u. Suppose that the sequence {Uk, vk, 7k Yk, Ak}k is
bounded. Then Algorithm 4.3 needs O (612) iterations to find an e-approximate KKT

point, i.e., (UKL VK1 Zk+1 ykt1 ARy oith k = O (e72), such that
UKL AT VEDT =0, [VEH 4+ (UFFHT AR < 0o,
YR AR Z g, dist(—iAk“, a||zk+1||1) < 0(e), and

||Uk+lvk+1 4 Zk+1 _ M — Yk+1|| < 0(e).
Proof We first prove Lg (Uk, vk, 7k Yk, Ak) > 0. From (4.29), we have
Lg (UK, VK, ZF Y* AF)
1 k2 k2 k Mk 2
= (12 0vA1) iz + Dy

B

+u<Yk,Uka~|—Zk—M—Yk>+
1

= (I 4+ VA1) 4+ o1z + Y+ UFVE 4 2 - - Y2
+’6;“||U’<V"+Z’<—M—qu2

> 0.

140 4 ADMM for Nonconvex Optimization

Summing (4.25) over k =0, 1, --- , K, we have

min 1||vk+1 _ Vk||2 + 1 ||Uk+1 _ Uk”2 + H _ ,LL2 ||Yk+1 _ Yk”2
0<k<K |2 2 2 p

_ Lp.v0. 20 YO, A%)
- K+1 ’

Thus, we know that the algorithm needs 0(512) iterations to find (U", VK 7k Y,
Ak) such that

IV — Vo <6, U UM <e, 1Y YY) <e
From (4.24¢) and (4.29), we have
[UKFIVRHL L Zh+1 v — Ykt

1
= AR AR = Bk R < o).
B B

From (4.28) and (4.29), we have
Uk-‘rl + Ak+1(Vk+1)T —0 and ,LLYk+1 _ Ak+1 =0
respectively. From (4.26), we have
Vk+1 4 (Uk+1)TAk+1

= Vg gk thT <U"“V"+1 2 M-y ;Ak)

— Vk+1 +ﬁ(Uk)T <Ukvk+1 4 Zk+1 —M-— Yk 4 ;Ak>
+ BUHT [(UkH — Uk VR oy Yk):l + (URHT g T AR

— BUHT [(UkJrl — Uk VR ykH Yk)] +(URHT gk T AR

So by the boundedness of {Uk, VK, Zk, Y, Ak}k we have
From (4.27), we have

p

1
. [(Uk+1 _ Uk)Vk-H _ (Yk+1 _ Yk)] c a”Z]H-l”l + ARt
T

References 141

and thus
1
dist (— AR g ZA! ||1) < 0(e),
T
due to the boundedness of {Uk, vk, 7k Yk, Ak}k. a
References

1.

2.

3.

10.

11.

12.

13.

R.I. Bot, D.-K. Nguyen, The proximal alternating direction method of multipliers in the
nonconvex setting: Convergence analysis and rates. Math. Oper. Res. 45(2), 682-712 (2020)
S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

E.J. Candes, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM 58(3),
1-37 (2011)

. W. Gao, D. Goldfarb, EE. Curtis, ADMM for multiaffine constrained optimization. Optim.

Methods Softw. 35(2), 257-303 (2020)

. D. Hajinezhad, T.-H. Chang, X. Wang, Q. Shi, M. Hong, Nonnegative matrix factorization

using ADMM: algorithm and convergence analysis, in IEEE International Conference on
Acoustics, Speech, and Signal Processing (2016), pp. 4742-4746

. M. Hong, Z.-Q. Luo, M. Razaviyayn, Convergence analysis of alternating direction method of

multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337-364 (2016)

. B. Jiang, T. Lin, S. Ma, S. Zhang, Structured nonconvex and nonsmooth optimization:

algorithms and iteration complexity analysis. Comput. Optim. Appl. 72(1), 115-157 (2019)

. G. Li, T.K. Pong, Global convergence of splitting methods for nonconvex composite optimiza-

tion. SIAM J. Optim. 25(4), 2434-2460 (2015)

. J.Li, M. Xiao, C. Fang, Y. Dai, C. Xu, Z. Lin, Training deep neural networks by lifted proximal

operator machines. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3334-3348 (2022)

G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, T. Goldstein, Training neural networks
without gradients: a scalable ADMM approach, in International Conference on Machine
Learning (2016), pp. 2722-2731

F. Wang, W. Cao, Z. Xu, Convergence of multi-block Bregman ADMM for nonconvex
composite problems. Sci. China Inf. Sci. 61(12), 1-12 (2018)

Y. Wang, W. Yin, J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimiza-
tion. J. Sci. Comput. 78(1), 29-63 (2020)

J. Zhang, Z.-Q. Luo, A proximal alternating direction method of multiplier for linearly
constrained nonconvex minimization. SIAM J. Optim. 30(3), 2272-2302 (2020)

Chapter 5)
Stochastic ADMM Creck o

Consider the following linearly constrained separable optimization problem:

)1‘111’1)‘112 (fix1) + f2(x2)),

s.t. Aix; +Ayxo =b. 5.1

For lots of machine learning problems, fj(X1) is typically a loss over the data and
f2(x2) is a regularizer that controls the complexity of the model or provides the
prior information of the solution. For such problems, we may assume that fj has a
structure as follows:

fix) =EF(xy; §), (5.2)

where F(x1; &) is a stochastic component indexed by a random number &. For
traditional machine learning, the data are often finitely sampled. If we denote each
component function as F;(x), we can rewrite f1(X) as below:

1 n
Ay =Y Fix), (5.3)

i=1

where n is the number of individual functions. When # is finite, (5.3) is an offline
problem, with examples including empirical risk minimization. n» can also go to
infinity, which is a general case. In the rest of this chapter, when we study the finite-
sum (offline) problem, we shall use the formula (5.3); otherwise, we use (5.2).

When 7 is large, accessing the exact function value of f1(x1) or its gradient may
be very expensive and even impossible when n = oo. To deal with such large-
scale problems, the standard way is to estimate the full gradient via one or several
randomly sampled counterparts from individual functions. We call algorithms using
this technique as stochastic algorithms.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 143
Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9840-8_5&domain=pdf
https://doi.org/10.1007/978-981-16-9840-8_5

144 5 ADMM for Stochastic Optimization

In this chapter, we will introduce a variety of stochastic ADMM methods to
solve Problem (5.1) with f] in the form of (5.2) or (5.3). In practice, the stochastic
algorithms are often much faster than the deterministic ones. To begin with, in
Sect.5.1 we introduce the naive stochastic ADMM algorithm, which randomly
samples an individual function and uses its gradient as an estimator of the full
gradient. Recall that the deterministic ADMM converges in O (1/K) when fj and
f> are convex functions, where K is the iteration number. In comparison, we will

show that the naive stochastic ADMM can only achieve an O (1 /K) rate under

similar conditions. The slower convergence rate is caused by the variance of the
noisy gradient. Because the variance will not converge to zero through the updates,
we have to choose a decreasing stepsize. We will introduce variance reduction (VR)
technique in Sect. 5.2, which can reduce the adverse effect of the noise, especially
for the offline case. We show that the convergence rate can be improved to O (1/K)
when the stochastic algorithm is equipped with VR. Later in Sect. 5.3, we consider
fusing VR and momentum techniques, and show that a non-ergodic O (1/K) rate is
achievable under mild conditions. Finally, in Sect. 5.4, we extend our analysis to the
nonconvex setting.

5.1 Stochastic ADMM

We consider Problem (5.1) with fi(x;) = EgF(x1,£). In each iteration, we
independently sample a stochastic index & and compute the stochastic gradient
V F(x1, &). For the simplicity of our expressions, we denote V F (X1, £) by @fl (x1).
The algorithm of Stochastic ADMM (SADMM) was designed in [9] and is shown
in Algorithm 5.1, in which the approximated augmented Lagrangian function ig is
given as

Loxixa) = fi (%) + (94 (xf) x1 = xb) + f2xo)
B 1 |? k|2
+ HA1X1 HA —bt A Hxl —X1H .54

+
2N0k+1

Note that for the simplicity of our analysis, we only linearize the objective function
f1 in Algorithm 5.1. In Sects.5.2 and 5.3, we will consider also linearizing the

2
augmented term g HA1X1 + Axxp) — b+ ék H . Our result can also be extended to

the case where f> has the expectation structure. An example is shown in Sect. 5.3.
Now we begin the analysis. The proof is taken from [9]. We first prove a useful
lemma.

5.1 Stochastic ADMM 145

Algorithm 5.1 Stochastic ADMM (SADMM)

Input: x(l), xg, and A0 = 0.
fork:0,1,2,~~~d0A N
1 }u{’l‘+1 = argminXl L’é(Xl, x'z‘ A5, with L’B (x1, X2, L) given in (5.4).

2 xg“ = argmin},‘2 I:g(x’frl, X2, A5).

3 A,k+l — A.k +ﬂ(A1X/l<+1 +A2X§+l —b).
end for k

Lemma 5.1 Assume that f is ju-strongly convex and L-smooth and f is convex.
For k > 0, if the stepsize ng+1 < 1/(2L), then for any X, we have

fi (x’{“) + (x’;“) A = A+ (X, At Akt - b>
< e [0 —vah|

- <2771+1 - g) HX]I i

(9 (x) = 9 () b i) (R =280 = 1 -0

2
)) (5.5)

where (X}, X3) is any optimal solution to Problem (5.1).

2 1 2
2 HXIIH - X
Nk+1

2
k+1
o LS v

+ g (HAzxg — Azxz

Proof Because x]f'H = argminXl i% (x1, x’é, kk), by the first-order optimality, we

have

Ui (xh) + pAT (At + Ak —b) +ATR (X x) =0,

Nk+1 (5.6)
Because f is L-smooth, we have .
A(E) =7 () {90 () A =) e e
Because fi is u-strongly convex, we have
fi (xlf) < fi(x})+ (Vﬁ (x’f) Xk — XT> - '; Hxlf —x} ? (5.8)

146 5 ADMM for Stochastic Optimization

Therefore, combining (5.7) with (5.8), we have
) 1060 9)) st

= 0+ (9 (<) = 9 () o i+ 5 [
=] {9 () - 9 (o))

~

I

{0 (=)).

)43

By the Cauchy—Schwartz inequality, we have for /; that

I < niyr val (le) Vh (Xl)H

k k+1H
X| — X . 5.9
477k+1 H b

Plugging (5.9) and (5.6) into I and I, respectively, we have
fi(x (k+1) — fi(x})
(,3 <A1Xk+1 + Azxg — b) + Xk, A1X>i< — A1X11<+1>
+ <Vf1 (x/f) -Vf (xlf) , x]f - XT>

i P) [) o ()

2
O | el I
4'7k+1 2

On the other hand, because

(5.10)

k+1 k k+1 k
X, _argmlnLﬁ< , X2, A),

by the first-order optimality, we have

[,BA2 (Alxk+1 + Aoxk ! - b) 4 AZT)J‘] cif (x’;“) . (5.11)

5.1 Stochastic ADMM 147
So by the convexity of f>, we have
k+1
£ (4) - 2 (x3)

< <ﬂ (Alxk+1 + AT - b) + Ak, At — A2Xk+1>, (5.12)

where % uses (5.11). Adding (5.12) and (5.10) and using nx+1 < 1/(2L) and the
fact that

(XX _le+1> 2 H T2 H x| T2 H i X’fH2
from (A.2), we obtain
h (k+1) fi (X)) + f2 (k+1) — 2 (x3)
= (o =) il = 7 il

+ (Vf1 (xlf) -V (x]f) , x]f - XT>

<,3 (Alxk'H + Azxk-’_1 b) + Xk, A1X>i< — A1X]f+1 + A2X2 A2Xk+l>
+ B (Azx’é — A2X§+1, A1X1 A1Xk+1>
- r N
et [() = v ()] (5.13)
Observing that
AIX{+ A5 =b and A=K 48 (At 4+ At~ b)
from line 3 in Algorithm 5.1, we have
([ﬂ (Alxk—i_1 + A2Xk+1 b) + Xk] — X, AIXT — A1X]f+1 + A2X2 A2Xk+l>

_ ; (X kL kD xk>

=

k+1H ‘Xk_xk+1)‘2+2; ‘X_xk)‘z, (5.14)

28 H*_ 25)

148 5 ADMM for Stochastic Optimization

where = uses (A.2). Moreover,
B (AQX'; — A2X§+1, Aix] — A1XII+1>
=B ((Azx’g - Azx;) - (Azx’g“ - Azx;) - (Alx’;“ - Ale) - 0>

éﬂ‘ 2_ﬂ)
2 2

2 2
‘Azxg — Azxz — g HA2X§+1 — Azxz ‘Azxé + A1X]f+1 - bH

2
e an

2
< g HAzxg — Azxz

2 2
— g HA2X§+1 — Azxz + g HA2X§+1 ~|—A1X"f+1 — bH

2 2

’

= 'g HAng —Aox3| — /; HA2X15+1 — Aox;

2+ 1 ka_karl‘
2B

(5.15)

where = follows (A.3) and uses A1x] + Azx;=b. Adding (X, Alxlfﬂ—}—AzxéH —b>
to both sides of (5.13), and plugging in (5.14) and (5.15), we obtain (5.5). |

We now provide the convergence result for Algorithm 5.1.

Theorem 5.1 Under the assumptions of Lemma 5.1, assume that the variance of
f1’s gradient is uniformly bounded by o2, i.e.,

E¢|[VFi(x1,€) — VAix)I* < o for all given x;.
Define
Dy =X} —xi| and Di = ||Axx) — Asxi|l.

For the generally convex case, i.e., @ = 0, set the stepsize ny = 1/(2L +

Vka/Dy),

K

_x 1

K
1
k <K k
X mXy and Xy = _ E NkXs,

= K
D=1k =1 D k=1 Mk =1
then for any p > 0 and sufficiently large K, we have
Efi (RF) +Ef (X5) = £i (x)) = /2 () + pEIAIRS + AoxK — b

<2D1010gK+ o Dl+ 02 BD3
- VK VK| 2 2BQLDy+0) 2Q2LDi+o0) |

5.1 Stochastic ADMM 149

For the strongly convex case, i.e., |t > 0, set the stepsize nx = 1/(2L + k),

1 X K
<K _ k <K k
X; = K E X; and X, = E X3,
k=1 k=1
then for any p > 0, we have

Efi (i{(> +Ef (i§> = fi(x}]) = f2(x3) + pE HAlgf + ALK — bH
2 2 2
o2(logK +1) 1 D
L N
nK K 28 2
Proof For the case u = 0, (5.5) reduces to

fl(k+l> +h (k+l> A= () + <x Alxk“ 1A, Xk+1 b>

& 2 1 2 1 2
k k k _ ox k+1 *
1 ' 20k+1 ! ! 2Nk+1 1 1

(9 () =9 () o i)y (2 [roa)
2>.

Multiplying both sides with 741, summing the above result fromk = 0to K — 1,

using nx4+1 < Nk to drop some non-positive terms, and finally dividing both sides
K

with > nk, we have
k=1

+ g (HAzX’E — A2X2H HAQXkJrl AQXE

X_:Uk (fl (X’f) + f2 <X§>) — f1(x}) = f2(x3)

~|—<):, 1 XK: (Alx]f~|—A2x]§)—b>

1 K-l) - r N 2
f [Z Lo () - sh () + B

150 5 ADMM for Stochastic Optimization

+I:2:::nk+1<vf1 (X]f) Vf1() —X1>

+;f13 ‘X—XOHZ—%'B’“ ’

2
i| . (5.16)
By the convexity of fi and f>, we have
f(EE)+ £ (3) = Kl an (A () + (). 1D
Z
Letting

p (A1XK + A% —b)

i= ,
|AIX] + Asxy — b

recalling A’ = 0 in Algorithm 5.1, taking full expectation on (5.16), and using

(5.17), we have

Efi <X1) +Ef (xf) = fi(x}) = f2(x3) + pE HAlgf + ALK — bH

< [l -en el
k; Mk

- Xz {o (4) - 94 (o) - <)

D? D?
L me* BmD;3 .
2 " 28 2

For each k > 1, we have
~ 2
2971 () - v ()]
~ k X 2
=EiE;---Er—1 | Ex val (Xl) -Vh (Xl)H

<EEp---Fy [02] =02, (5.18)

5.1 Stochastic ADMM 151

where E; denotes the expectation taken only on the random number at iteration k
given the previous updates. We also have

E(vi () - 91 (). 5 —xi)
i 5 (7 () - 9 ())
=EiEp - E-1[0] =0. (5.19)

Moreover, when K is sufficiently large we have

=2 (D;)z |:10g (1 + 2LGD1 JK) - (1 + i—l;/D[{l>_l:|

IA

[\S)
N
@ 5
N—"
[\)

o3

oUQ

>

and

-1

K K+1 -
D> o> / <2L+ Jx) dx
1 1 D,
_ar (DY e (VK +1-1)
N o 2L D,

—1lo 1+ o \/K +1)+1o 1+ o
8\ T arp, 8V M aLp,
= Pk
o
Putting the pieces together and using n; = 1/(2L + o/D;), we obtain
Efi (i{(> +Ef (i§> = fi(x}) = f2(x3) + pE HAlgf + ALK — bH

D 2 D2
2Diologk + 74 9P 4 PeDr
2> T 28QLDI +0) " 2QLD; +0)

=<

1
VK

152 5 ADMM for Stochastic Optimization

For the u-strongly convex case, using ny = 1/(2L + ku), (5.5) becomes

AE) 4 (57) = A 6D) = 2 () + (T A+ Ao)
2 1
2041

—I—(Vfl <x1f> - Vi (xlf)xlf —XT>+ 21/3 (HX — ka2 — HX -)‘kHHZ)
2>.

Summing the above result from k = 0 to K — 1, dropping some non-positive terms,
dividing both sides with K, again using the convexity of f; and f>, letting

2
k+1 *
HXI — X

- 2 1
o) o) L

2
+ g (HA2X§ — A2X§ — H A2Xl§+1 — A2X§

p (A1XK + A%K —b)

X =)
[AIXE + AxK —b|

taking full expectation, and finally applying (5.18) and (5.19), we have

Efi (5) +EA () = /i () = 72 () + pEIAEE + Aoxf — b

2 K
LHO *

o 1 2 1 - 2
: e
_K;2L+ku+K o H +

2
2,31(‘Azxg — A2x§

x|
2K

—_

o?(logK +1) LD} p> BD3
= nk K 28K 2K

AR

)

a
where < uses

Koo Ko K 1 logK +1
Z <Z < dx + = .
o 2Lk =k 1R H ®

5.2 Variance Reduction

The Variance Reduction (VR) technique is initially designed to solve the problem

n

min ! Z F; (x).

xeRd 1 4
i=1

5.2 Variance Reduction 153

Algorithm 5.2 SVRG-ADMM

Input xg’ 1 xg’z, lg. Set epoch length m, X1 = Xg’l, and stepsize 7.
lfors =0to S — 1do

2 fork=0tom — 1do

Randomly sample iy ¢ from [n]

Vfl(X 1)— ’kx(xvl) th(xsl)'i_ Zz IVF(XAI)
Update xk+‘ by (5.21).

Update xk+1 by (5.22).

Update dual variable: A’;H kk + B (Alxk+1 + Agxk+1 b).

end fork

Kepri = b op X6 x0, = x" fori=1,2,and A0, | = A"
end for s

OO0 9 N N AW

It is known that the standard Stochastic Gradient Descent (SGD) will enjoy a sub-
linear convergence rate when each F; is strongly convex and smooth. Surprisingly,
the VR technique can accelerate stochastic algorithms to a linear convergence rate.
The first VR method may be SAG [10], which uses the sum of the latest individual
gradients as an estimator. The method requires O(nd) memory storage and the
estimated gradient is a biased gradient estimator. Later, lots of VR methods have
been designed, e.g., SDCA [11], MISO [7], SVRG [6], and SAGA [2].

In this section, we introduce the application of VR to ADMM methods. We show
that for the offline problems, VR improves the convergence rate to O (1/K) for the
generally convex case. We use a classical VR method called SVRG [6]. Its main
technique is to frequently pre-store a snapshot vector and to control the variance via
the snapshot vector and the latest iterate.

Specifically, consider the problem:

min (f1(x1) + f2(x2))

X1,X2

s.t. Aix; +Axxo = b, (5.20)
where f1(x1) = }11 Yo', Fi(x1). We introduce SVRG-ADMM proposed by Zheng

and Kwok [12]. The algorithm is shown in Algorithm 5.2. In the process of
solving the primal variable, we linearize both fj(x;) and the augmented term

’;’ HA1X1 +Aoxy —

k-|i1 = argmin ((6]‘1 <X§’1> , X — X§’1>

X1

+ <,3 (Ale,l + A2X§,2 — b) + X";, Ay (X1 — X];,l)>
1 2
Y-

154 5 ADMM for Stochastic Optimization

and
X’,;"El = argmin (fz(Xz) + (ﬂ (Alx";jl + Azxf’z — b) + Xf, Ay (X2 — X',;’2>>
X2
1 v 1?
+ sz - stH) (5.22)
where

m=1/(9L+BIAI3) and m=1/(B1A:13).

The main step to reduce the variance is line 4 of Algorithm 5.2, where the gradient
is estimated by

. 1 <
k k < 3
Vfl (Xs,l) = VFik.s (Xs,l) - VFik.s (XS,I) + n Z;VFi(Xs,l)s
1=

in which X; 1 is the snapshot vector and ,11 Z?:l VF;(Xs,1) is re-computed at the
beginning of the outer loop.

The following analysis is taken from [12]. We first show that the variance of this
specially estimated gradient can be controlled by the lemma below.

Lemma 5.2 Assume that F; is convex and L-smooth for all i € [n]. Let By denote
the expectation taken only on the random number iy s conditioned on XI; 1- Then we
have

ExV fi (X§,1> =Vh (XI:I)
Let (X7, X3, A*) be any optimal solution of (5.20). We have
B |V (%) = v (%)) H2 s4r[m(x) +m&o]. 623)
where Hy(x1) = f1(x1) — fi(x}) — (VA1(x), x1 — x}).

Proof First, we have

) - I ¢ .
BV (%) =BV, (X)) - B (VFik,S CHESDY vmm,o)

i=1

=V/fi (X];,l) .

5.2 Variance Reduction 155

Thus V f (xf 1) is an unbiased estimator of V fi (x’;)- Then

I

95 1) - ()

2
=B [V, () = VF G+ Vi) = Vi (5]

IA=

B [v i (s41) - ¥ |

b . 2
<28 | VEy, (x4,) - VFi (x)

+ 2K ”VFik,x (X5,1) — VF | (XT) Hz’ (5.24)

a
where < uses

Ee (VFi, (1) = VFi &) = Vi (x51) = VG

b
and E||& — E£||> < E||&||?> for random vector & (Proposition A.3) and < uses ||a +
b||> < 2|al|® + 2||b||. Since f;(x) is convex and L-smooth, it follows from (A.5)
that

IVF(x) = VE(WI? < 2L (F;(x) — F;(y) + (VF(y),y—x). (525

Letting x = x’; , and 'y = xJ in (5.25) and summing the result with i = 1 to n, we
have

2
Be |V, (1) =V, ()| =228 (X)) (5.26)
In the same way, we have
By |V, Gs1) — VFi | < 2LHi (K1) (5.27)

Plugging (5.26) and (5.27) into (5.24), we have (5.23). |

We then study the inner loop. For the sake of simplicity, we drop the subscript s
in the analysis of inner loop, since it is clear from the context.

156 5 ADMM for Stochastic Optimization

Lemma 5.3 Assume that F; is convex and L-smooth for i € [n] and f> is convex.
Then for k > 0,

Ex f1 (k+1) i (XT) + Ex f2 (X/;_l) P (Xz) + Ex <X* Alxk-H + Azxé“ — b>

1 k < k 2 k+1 2 k 2
< 4<H1 <x1>+H1(x1)>+HX1—XT G — Ey H X G +HX2—X§
2 1 2 2
- K H k+1 * _ Xk H _ E AF —)»k-H H , 5.28
] 25 B (5.28)

where Gy = L [(BIA113 +9L) 1 — BATA] and G2 = 5 ||A2 3L
Proof By the optimality of solution XII-H in (5.21), we have
~ 1
i () + BAT (Arxt + Aoxs —b) + ATA + " (! —xb) =0. 529
By the L-smoothness and the convexity of fi, we have
k1 k K okl kN Lkt ok
£ () = 1 () (VA () 4 =) [t o
L
= 1 (60)+ (971 (s1) i i) -
~ 2
= 1 0) (1 () = 91 () o)+]
+ (@fl (xlf) -V (x]f) x]f - x”f+1> (@fl (xlf) x]f+1 - XT>

I

I

I n
(5.30)
By the Cauchy—Schwartz inequality, we have for /; that
1 = k K\ | k12
Bult < oy B[94 (4) = VA ()] o [t -]
1 2
< A <H1 (xl) +H (xl)) +4LE, Hxl "“‘ , (5.31)

where in % we apply Lemma 5.2. On the other hand, we have

Ec (Vi (%) = 91 (%) 5 = xi) =0,

5.2 Variance Reduction 157

Thus taking conditional expectation E; on (5.30), bounding I; by (5.31), and
plugging (5.29) into I, we have

B () = £ ()
< i (11 (%) + H&0)) + 92LEk [—xit H2
+Ei (B (A1} + Aoxf —b) + 25 At — A
+ 7711 Ex <X]f+1 _ le’ Xt — le+1>. 5:32)
By the optimality of solution X§+1 in (5.22), we have

— |::3A2T (Alxlfrl + Azxg - b) + AZTXk + ’712 (x’;rl — xg):| € dfa (xgﬂ) .

(5.33)
So by the convexity of f>, we have
S (571 = 12 ()
= (B (A + Aox - b) 25 Aoxg — Ak ™)
+ ,712 (X§+1 - xg, X; — x§+1>, (5.34)

where % uses (5.33). Taking conditional expectation on (5.34), adding it with (5.32),

then adding E; (X*, Alxlfrl + Ale;rl — b> on both sides, and finally using the fact
that

2 2 1

2 2)

2
k *
X, —X;

Xk xx

i i X;

1
(X{;Jrl _xk X — Xk+1> _ :

o i 2)

xf.‘“ - k’

fori =1, 2 from (A.2), we have

B () = 1 (67) + e (47) = 2 () + B (15 A 4 o)

1 (k < Lol 21 k+1 2
< L)) - -
4 ! 2 1701 2m ! !
1 2 1 2 1 2
+ Hx§ -x5 - Ex Hxﬁ+1 -x5| - Ex Hxﬁ+1 — x§ H
2n2 2m2 2n)

+ B (B (AT + Aoxk = b) + 1k — 1% Arx) — AT 4 Aoxg — Aot ™)

158 5 ADMM for Stochastic Optimization

+ BE <A1X]f —A1X]f+1,A1X1 A1Xk+1>

(o=)l -4

For the fourth line of (5.35), we have

(B (A" + Aaxh —b) + 25 =%, i) — A+ Aok — Aok
(,3 (Alka + AT b) FAR AT AKX AT A — A2Xk+1>

-

I3

+ 8 (Azxg — A2X§+1, A1X1 A1Xk+l>

- -

Iy

iy (Azx’g — Aot Aoxs — A2x§+1> . (5.36)
For I5, since
Ak gk ny (Alxk+1 JrAzx/;ﬂ . b),
using the same argument as (5.14), we have

H N H2
28

Ak H2 (5.37)

For 14, using the same argument as (5.15), we have

2 2 2
I4§'§HA2X§—A2X§‘ —g HAzxg“—Azx; + ‘xk—xk“H . (538)

5|
2B
Plugging (5.36), (5.37), and (5.38) into (5.35), and using (by (A.1))

(Aixf — AT A — Ain»(+1> -, HA,»TA,- H L xk ?
L)
HAT) et _ k]
< [a) - s (=)

fori = 1, 2, we can obtain (5.28). m]

5.2 Variance Reduction 159

Now we give the convergence result for Algorithm 5.2.

Theorem 5.2 Under the assumptions of Lemma 5.3, letting

sz‘

0
)

*
i

0 .
D,'=Hx0’i—x K i=1,2,
1

Dy = fi (X8,1) - h (XT) - <Vfl (XT) ,X8,1 - XT>’ and
1 S
=) % i=12
s=1
we have

E(fi (5)+ 2 (%) - i (<) = 2 () + (A Axf + Aox§ — b))

2 2 2
_m+hDy Df 2(D} + D3)

, (5.39)
28m BmS mS

2 2 2 B(m+1)

_s _s Dy, \/Dx"‘zﬁ(Dl"‘Dz)"‘ 2 Dy

E A1 + 4058 —b| < mgs s .
(5.40)

Proof Because (x}, X3, A*) is a KKT point of Problem (5.20), we have
ATV + VA (x)) =0 and —AJA* € dfs (x3).

In Lemma 5.3, plugging V f; (x’lk) = —AITX* into the definition of H; (x’f) +Hi(X1),
we obtain from (5.28) that

B (57 =1 () B £ (671) = 72 () + B (17, A Aot)
= (7 () = 60+ o (4 =x0))

+ i (fi&) — f1 (x7) + (A" A (%1 —x7)))

2

2 2 2
k * k+1 * k * k+1 *
B e e R e R
+ Hxl X] Gl k(X1 X G, + (X — X5 G, k[Xs X5 G,
1 2 1 2
+ ‘x*—x"H - Ek‘x*—xk“H . (5.41)
2p 2p

160 5 ADMM for Stochastic Optimization

By taking full expectation on (5.41), using b = A|x] 4 Ax}, arranging terms,
and adding back the subscript s, we have

(0 4+ ()
+E (£ (x k“) £ (3) + (1. s (x5!~ x3))
< iJE (5 (k1) = 7 () + (1 A () = x7)))

1
= B () = A 6D+ (A (R = x1)))
1 -
+ B Re) = /i (57) + 7 Ar (R = x7)))
VI * /<+1H2
+ 28 Ag 28 Ag
2 2
xkl—x’f G —E xfjl—x’f G
2 2
+E Xf’z—xﬁ GZ_E xffgl—x; .

Summing the above inequality from &k = 0 to m — 1, we have

i ZE<f1 (Xf,l) - fi(x)) +<)~*vA1 (Xf,1 _XT)»

»
I
-

siEf«QJ—ﬂ@wwﬂAwﬂr«ﬂ»

= B () i x0) + (37 A 2 —x)
’Z (f1Gs) = fi (x]) + (A", Ar (Re1 —x7))
+21,3 - 2_21;3E||’~*—"§"||2
vE[, x| BN - i,
+E [, x|, ~E 1 -xilG,

5.2 Variance Reduction 161

Then using

§,1°

1 m
3 L — k 0] :__ 0 _qm
Xg11,i = E Xg 1, Xgy1; =Xg; fori=1,2, and A, =17,
k=1

by the convexity of f and f> and
H&) — fr(5) + (A%, As (x2 — x3)) = 0,

we obtain
?E (/1 &g, — f1 (x]) + (A%, A1 (Re1,1 — x7)))
+5E(AG2 = () + (A (K12 = x3))
< E(A ()~ A D)+ (A (30, - x0))
- iE (fl (Xg+1,1) = fi(x)) + (X*v Al (Xg+1,1 - XT)»
n ’ZE (fiGe0) — fi () + (A%, Ay (%1 — x})))

- ’ZE (fi&s41,0) — f1 (x]) + (A5 A1 (Req1.1 — X7)))

1 2 1

0 0
BV A = E x*—me
2 2
0 0
+E|x;; — x| G —Elxg 1 —X] &
E|[x%, — x* ? —Ex%,,,—x} ? 5.42
+ X, 0 — Xy X112 —X) . (5.42)
’ G ’ Gy

Summing (5.42) from s = 0 to S — 1, recalling if = ; Zle X fori = 1,2, by
the convexity of f and f> and

fix) = fi (x7) + (A% A (x1 = x7)) = 0,

we have
Se (A () - £ D)+ A (5 - x0))
+ sz]E (fz (Xg) - L (%) + <X*’ A2 (Xg N Xz)»

1) = A (a0 A (s - xd))

IA
—_
=
—~
=
——~
.
o

162 5 ADMM for Stochastic Optimization

+ ’Z]E (fi%o,1) — f1 (x}) + (A%, A1 (X0,1 — x})))

1 2 1 2
+ o [r =28 = A28
2B 2B
+ HXO —x} ’ + HXO - x5 ? (5.43)
0,1 g, 027 %2l .
For (5.43), using
1 * 0 2 * * s 0
and AITX* = —V fi1(x}) in the KKT conditions, we can obtain (5.39).
On the other hand, using
f; (xS) — i (x7) +<x*,A,» (xS - xf)) >0, fori = 1,2,
from (5.43) we have
2 1
E|x 28| =} +26 (D} + D3) + ﬂ(m; 'p;.
Then it follows by the Jensen’s inequality (Proposition A.4) that
m+1
E‘x*—xgH5\/D§+2ﬂ(0%+D§)+’6() "Dy, (5.44)

Therefore, we obtain (5.40) via

1 S m
mS Z Z <A1Xf_111 + Azxf_l’2 — b)

= osE 8-

1

(2] -
mpBS

+ ng—x*

)

1 Bim +1)
= s <\/D§+2ﬁ(D§+D§)+ 5 Df—l—Dx),

Q

where % uses (5.44). |

5.3 Momentum Acceleration 163
5.3 Momentum Acceleration

When applying the VR technique, the algorithms are transformed to act like a
deterministic algorithm. So it is possible to fuse the momentum technique. In this
section, we fuse the VR with the momentum techniques for the ADMM algorithm.
As an example, we provide an ergodic (actually only averaging the last several
iterates) O (1/K) stochastic ADMM in the convex setting. Our method can also
be generalized to design algorithms that ensure the bounds related to the objective
functions decrease in the same way as shown in Theorem 3.10.

We consider the convex finite-sum problem with linear constraints in the general
setting:

. ¢
min (hl(Xl) + fix1) + ha(x2) + Z Fz,i(X2)> ,
X1,X2 n

i=1
s.t. A1x; +Axxo = b, (5.45)
where f1(x1) and F; ;(x2) with i € [n] are convex and L;-smooth and L;-smooth,

respectively, and k1 (x1) and & (x2) are also convex and their proximal mappings
can be solved efficiently. We define

1 n
L) = > Fitx),
i=1
Jix) =hi(x) + fikx), J(x2) = ha(x2) + f2(x2),
X = (x{, sz)T, A=[AL A, and J(X) = Ji(x1) + Ja(x2).

To begin with, we list the notations and variables in Table 5.1. The algorithm
is designed in [3], which has double loops: In the inner loop, we update primal
variables xf | and xf , through extrapolation terms yf , and yf , and the dual variable

Xf ; in the outer loop, we maintain snapshot vectors X411, Xs+1,2, and b1, and

Table 5.1 Notations and variables

Notation Meaning Variable Meaning

x,¥)G, IXllg xTGy, VxT Gx y’;,l, y’;,z extrapolation variables

Ji (x;) hi (x;) + fi(x;) X’;,l, X’;,z primal variables

X (XIT s X2T) ’):,;, k’; s):k dual and temporary variables
y (le sz) ! . . =~ snapshot vectors

J (%) J1(x1) + 2(x2) %01 5.2, by used for VR

A (A1, Ao] (x},x3,1*) KKT point of (5.45)

Tk.s mini-batch indices b batch size

164 5 ADMM for Stochastic Optimization

Algorithm 5.3 Inner loop of Acc-SADMM
fork =0tom — 1 do
Hles Ak — 3K 4 8O k kK _T
Update dual variable: A{ = A + 015 AIX&1 —|—A2x&2 by).
Update x; 7' by (5.46).
Update x’Sl by (5.47).
Update dual variable: Xf“ =248 (Alejl + Azxle - b).

Update y¥1 by y¥+! = xk+1 4+ (1 — 0, 5 — 65) (x¥+1 — xK).
end for k

then assign the initial value to the extrapolation terms y? 41,1 and y? 41, The whole
algorithm is shown in Algorithm 5.4. In the process of solving primal variables, we
linearize both the smooth term f;(x;) and the augmented term g IA1X] + Axxo —

b+ ék”z. The update rules of x; and x, can be written as

ijl = argmin |:h1(x1) + <Vf1 (ny) ,X1>

X1

+ <9? (Alyf,l + Azyf,z — b) + 2k A1X1>
,S

L B ’ e I
A [xi = | 5.46
+ (, T 201, l 1||2> X1 =Yy (5.46)
and
xi‘;l = argmin {hz(xz) + <@f2 (Y§,2) ,xz>
X2
+ <9'i (Aug’jj1 + Ay, — b) +x§,A2xz>
1 1 B) v 12
1 L A H - ‘ , 5.47
(14 16,) 22+ gy, 1008 -2 547
where

VA=, X (VR () - VEi, o) + VAG).

ik,x EZk,x

in which 7 ; is a mini-batch of indices randomly drawn from [n] with a size of b.
We first bound the variance of the stochastic gradient using the technique
proposed in Katyusha [1]:

5.3 Momentum Acceleration 165

Algorithm 5.4 Accelerated Stochastic Alternating Direction Method of Multiplier
(Acc-SADMM)
Input: epoch lengthm > 2, 8,7 =2,¢c = 2, xg =0, Bo =0,):g =0,%X = xg, y8 = xg,

_ 1 _ m-t
91’3‘ — ctrs? and 92 — t(m—1)"

fors =0to S —1do
Do inner loop, as stated in Algorithm 5.3.
Set primal variables: x? =X

Update %y by %o = ([1= 750 e [14 O 000 [t).

Update dual variable: XSH =l 4B —1) (Alev"’l + Apx]!, — b).

Update dual snapshot variable: by = A1Xgq1.1 + A2Xe412.
Update extrapolation terms yg 4 through

- 01,541
Y = (= 00X + 0%+ |

1,s

(1= 6L 0x! = (1 =61, — o)X~ = 0%,]

end for s
Output:

1 0 0 m—1
)}S = Xg’ + Ls to Z X§
(m =1 (O1,5+62) + 1 (m =115 +62) + 1 47—

Lemma 5.4 For f(x) = rll > iy Fi(x), with each F; being convex and L-smooth,
i € [n]. For any u and X, defining

. I R N
Vi =VFiw-VE®+ Y VF®),
n i=1

we have
~ 2
E[Vr@-vim| 2L (f® - f@+ (Vi@ u-R), (548

where the expectation is taken on the random number k under the condition that u
and X are known.

Proof We have

E|Vrw - viw|
=E(|VA® - VRE® - (V@ - Vf®)[’)

<E|VF@ - VE®|’,

166 5 ADMM for Stochastic Optimization

where in % we use

E(VF(u) = VF(X) = Vf() - V(X
and E||& — E&||> < E||&||? for random vector & (Proposition A.3). Then by directly
applying (A.5) to F; we obtain (5.48). O

Now, we give the convergence result. The analysis is much more complex
than that in SVRG-ADMM (Algorithm 5.2). The main property of Acc-SADMM
(Algorithm 5.4) in the inner loop is shown below.

Lemma 5.5 For Algorithm 5.3, in any epoch with fixed s (for simplicity we drop
the subscript s throughout the proof unless necessary), we have

E; L (x’{“, i+ x*) — 0L (&), Ko, M) — (1 — 6 —)L (x’{, X, x*)

2 ()
<
=28

+ = —oxt — ok — ot
2}’1 (1 2)X1 X1 1X1G

~k 2
—E;,

~k+1
Ao *

A=A

1

1
— _E;

2
k+1 k c
JEi X — =0 —oxt 0% —elxﬂc

1

1 k _ _ k o * 2
+2 y; — (=01 —02)x5 — Xy — 01X5
Gy

1
— ink

2
X — (1 -6 —)%k — 2% — 1% HG : (5.49)
2

where K;, denotes that the expectation is taken over the random samples in the
mini-batch Iy g,

L(x1,x2,A) = L(x1,X2, A) — L (x},x3,1%)
is the shifted Lagrangian function in which
L(x1,%X2,A) = Ji(x1) + J2(x2) + (A, A1x1 + Aoxz — b)
is the Lagrangian function,

k+ B —191)

(Ax* —b),

01 01

B

G = <L1 + p ||A1||§>1— 'BAlTAl, and
G =|(1+ ! Lo+ © 1Az03 |1
2= bo, 2 0, 217 | 1-

5.3 Momentum Acceleration 167

Other notations can be found in Table 5.1 and Algorithms 5.3 and 5.4.

Proof Step 1: We first analyze x;. By the optimality of le+1 in (5.46) and the
convexity of Jj(-), we can obtain

Ji (k“) <1 -0 -0 (X]f) + 6211 (X1) + 6171 (x})
(ATx (X1 ¥8) T = (= 01— Ba)xt - 6a%1 — 017
2
P]

_ (XII-H _ ylf’ k+1 —(1-6;— 92)X1 _ 92X1 91X*>G . (5.50)

1

We prove (5.50) below.
For brevity, we define

A(x1,x2) = AF + 9'3 (A1x1 +Axxo —b).
1
From the optimality solution of xlf“ in (5.46), we have
p 2\ (k1 T3 (vk vk
- [(Ll g 1A) (! = ¥h) + V71 (o) + ATE (3. 08)
€ ah (x’{“) . (5.51)

Since f7 is Li-smooth, we have

f1("“) < fi (y’f) <Vf1 (yl) ™ _y1> H i _ylfHZ
<f1(ll1)+<Vf1 (Y1) k+1_“1> 2 H i ylfuz

<f1(111)—<6 (k+l) IfH > (ATX (yl,y2> k+1_u1>

L
—(wa ||A1||2)(oy)+

1 2
> [

3

k+1

a
where u; is an arbitrary vector, Vhl(ka) S 8h1(xk+1) in < we use the fact that
f1(-) is convex and so

S1 (ylf) < fi(m) +(Vf1 (ylf) Y —ll1>,

168 5 ADMM for Stochastic Optimization

and % uses (5.51). On the other hand, the convexity of &1 (-) gives
hy (X) < hi(uy) +<Vh1(kH) lf“ ll1>-
So we have
0 (47) = e~ {873 (108)) s

—<L1+ ’ ||A1||2)(A —yhd T).

Setting u; be x/f, X1, and x7, respectively, then multiplying the three inequalities by
1 — 61 — 62, 62, and 61, respectively, and adding them together, we have

)

_ L
= =0 =071 () + n G+ () + ¥

(ATx (yl, y2) () — gy — 0y)xk — 0,% — elx’f>

k+1
=il

B ~
- (Ll A) (R X = (1= 6 - 0xd — 0% — 0nx)

k+1

i L
L (1—0,—62)] (xlf) + 0201 (%)) + 011 (xF) + — H

gk
2
— (ATX (1 08) X = (= 6 — x| - a1 — 1]

- (X"+ —¥h X = (=6 — 6% — % — 91XT>G ’
1

where in = we replace ATk(y1 y2) with ATl(xk‘H, yg) — ATAl(XkJrl — y"f).

Step 2: We next analyze x;. By the optimality of X§+1

of J>(-), we can obtain

]E,kh(k+1)
< -E, <A2T x(x "“,yz)+(aL2+ ’ ||A2||2)(1 —yh) gt —ezi2>
E, <A2TX(k+1,y2)+(aL2+ , ||A2||2>(-).

—(1—6; —0)xh — elx;>

in (5.47) and the convexity

169

5.3 Momentum Acceleration

+ (1 =61 —02) (Xlﬁ) + 0172 (X3) + 62J2(X2)

1 2
. 1 L H k+1 kH ’
+E [, (145, 124" -8

where o = 1 + béz' We prove (5.52) below.
From the optimality of x§+1 in (5.47), we have

- [(OéLz I ||Az||%) (+! —¥8) + 91 (38) + ATR (x4, y’é)}
e ona (x*1).
Since f> is Lo-smooth, we have
AOE) < 2 () + (v () T - y)+
We first consider (V f> (y2) Xk+1 - yé) and have
(V2 (04) ! - %)
%) (2 =31) + (87 —w))

a (sz (

R R R N SR N P
(v)75~ %)
12

(5.52)

(5.53)

H k1 y’EHZ. (5.54)

o
= (V£ (v5) w2 —v8) - es (v (

() 2 —w)+ (Ve (¥) - VR (B) 2 —w). 559

+"
where in = we introduce an arbitrary vector up (we will set it to be x3, X2, and x5,
. .. b
respectively) and in = we set

2 = x40 (v - %), (5.56)

in which 63 is an absolute constant determined later.
For (V f» (yé) ,z¢1 —wp), we have

(712 (8) 7+~ o)
<- <Vh2<k+1>+AT ("+1,y2>+<aLz+ﬂ||A2||2><k+1 ¥).

170 5 ADMM for Stochastic Optimization

(V2 (471) " 403 (45 - 2) —)
- B
- <A§ XX 9) + (Ole g 1203) (B =3) A4 o
- —<@h2 <X§+1> X+ 4, <y — Xk —i2> _u2>
. B
_<A2T). (Xt 8) + (aL2+ g, 14213 (B =9) . A~
c ~
< o) — hy (X511) + B3 — O3l (x471) — 03 (Vo (471, v — 4+1)
k+1 k+1 k+1
—< X(x9) + (aL2+ ||A2||2>< -¥5).2 —llz>
d ~
=hy(w) — hy (k+l> + 03ho(Xp) — O3h) <X§+l)
B
<A2T>.(L) + (OlL2+ g, 14213) (1 =3) A4 — o
— 03 <A§X(L) + (aLz o ||Az||%> (4" —¥8) + 912 (%)

o y2> (5.57)

where th(ka) € 8h2(xk+1) In % and L we use (5.53) and (5.56), respectively.

The inequality 2 uses (5.53) again. The inequality % uses the convexity of hy:
<Vh2< k+1),w]§+1> < hy(W) — hy (xé“), W =up, Xs.
Rearranging terms in (5.57) and using
V() =va () + (9 () - Ve ().
we have
(V52 (04) 7" ~ o)

< ha(up) — ha (X]§+1) + 03h2(X2) — O3h2 (k+1)

- <A2TX< L) + (aLz + 5 ||Az||§) (4 -vh).

5.3 Momentum Acceleration 171

0 (K+ y§) 2 - u2>
—0 (Vi () + (90 (W) - Ve () 4 -¥). 65
Substituting (5.58) in (5.55), we obtain
(4063 (V2 (v5) 557" —)
< (V12 (v) oo —¥8) = 03 (V5 (34) ¥ — o) + o) — i (5°)
+ 3 (%) — O3hs ()
- (ATR () o (oot) 10lE) (471 - 48).
!~y 0 (! —y§)>
+ <sz (y’é) -Vh (y’é) 63 (x’;“ - y’g) 2 - u2> . (5.59)

Multiplying (5.54) by (1 4 63) and then adding (5.59), we can eliminate the term
(V£ (v%), 57" — y%) and obtain

(1463 (x5+1)
= (4631 (¥8) + (V12 (¥8) w2 = ¥5) = 63 (V12 (¥5) ¥4 — o) + ()
+03ha2 (%) — < TR (= 9) + <ch2 + g IIA2||%> (4+ - vh) .
et

+ <Vf2 (ylﬁ) -V (y2> 03 (Al yli) +27 - “2>

L

= h) =6V (¥5) i %) + 0512 (¥5) + OaaR)

<A2Tx(RS y§) - (OéLz + e’i ||Az||§) (S+ — Y2>

2+ _u2+93< <K+l y§>>

172 5 ADMM for Stochastic Optimization

+ <Vf2 (ylﬁ) -Vh (y’ﬁ) , 03 <x§+1 - yg) 4kt u2>

L (T+0)L ka+1 B kH2’

) > Y, (5.60)

where % uses the convexity of f>:
(sz (ylé> ,up — ylé> < ow) - f2 (ylé) .
We now consider the term
<Vf2 (ylﬁ) -V (ylﬁ) .03 (XIEH - ylé) +2F - 112>-
We will set up to be x’é and xﬁ, which do not depend on Zj 5. So we have
Ei (V12 (¥8) = V205, 05 (x5! —¥%) + 271 —w)
=E; (sz (y’é) -V (y’g) L0325 4 Zk+1>
- E; (sz (y’é) -V (ylﬁ) .03 (ylﬁ - iz) + 63y} + ll2>
L (1+00E, (V2 (¥5) - V1 (¥h) . 271)
2 (1403, (V12 (v) - 912 ())
<1+ 0B, (V1o (v5) = V2 (4) X = o)
<E, (29212 195 (v) - 9.1 () H2) +E, ((1 J;Z;):Lz [+t — v H2>
< 63 (fz(iz) -2 (Yé) - (sz (yg) Xy — y'§>)
er (Vo P e -al).
where in the equality = we use the fact that

B (VA (%) - V() =0

5.3 Momentum Acceleration 173

and xg, y’é, X2, and up are independent of iy s (they are known), so

E;, <sz (y’é) -V (y’é) ,y’5> =0,
E;, <Vf2 (ylﬁ) -V (ylﬁ) 5<2> =0,
Ei, <Vf2 (ylﬁ) -V (y’é) ,112> =0;

d
the equalities 2 and £ hold similarly; the inequality < uses the Cauchy—Schwartz

e
inequality; and < uses

V2 (y’é) ~Vf (ylﬁ) H2

E;

II=

JE VA (W) ~ (V70 (W) - Vi + Vi) [

? (fz(iz) - f2 (y’é) - <Vf2 (ylﬁ) Xy — y’§>) ,

where = is by the independence of iy , [E; means taking expectation only on random

I\

b
variable i that is uniformly sampled from [r], and < uses Lemma 5.4.
Taking expectation on (5.60) and adding (5.61), we obtain

(1+6)E;, > ()
g
<-E, <A2T (<t v8) + (aLz ty 1MaI3) (57—).
k+ k+1 k
—uy + 03 (- y2> >

i 1 1406
+Jz(uz)+93]2(xz)+E,’k[2(1+93) (1+ o, 3)L H k1 y2H }

é—Eik<A2T (k+1,y2)+(aL2+£ ||A2||%)("+1 ¥).

1+ 93)X§+1 — 03Xy — ll2>
i I 2
+ ha(w) + 63 (Ro) + [20 +65) (1 +)Lz |51 = ¥4 }

where in = we use (5.56) and set 03 satisfying 6, = 1?9 . Setting uy to be xg and xﬁ,
respectively, then multiplying the two inequalities by 1 — 0;(1 + 63) and 6; (1 + 63),

174 5 ADMM for Stochastic Optimization
respectively, and adding them, we obtain
1+ 03)E;, /2 (x+1)

< —E;, <A2T L(x*yh) + (Ole v ||Az||%) (47 -v).

(1+63)x5" — 93i2>
E; <A2Tx(kbl gk) + (aLz + ||A2||2> (- Y2> :
—[1—6,(1+ 93)]x’§>
By, <A2TX (X1 98) + (aL2+ ||A2||2>< - ¥). —91(1+93>x;>
+[1 =611 +63)])2 (x) +601(1 + 63) 2 (x3) + 0312 (X2)
LB | Lt L, H k1 —ka2 . (5.62)
12 bO 2
Dividing (5.62) by (1 + 63), we obtain
]Elkh(k+1)
< -E, <A2T (it 98) + (aLz wh ||Az||%) (' —vh) - ezi2>
1
T T (k1 Gk B 2 k+1
By, <A X(xitv8) + (Oth ty ||A2||2> (4* - v5).
— (1 =6 —)xk — 91x§>
+ (=61 -0 (X]§> + 60112 (x35) + 6242(X2)
1 k+1 k 2
+]E’k[2 <1+b92>L2 H y2H ’

% andso "0+ _ 01 — 0;.

where we use 6, = | 163 1463

Step 3: Setting

Ak:XkJrﬁ(l—@l)

" (A% +Axxs — b)), (5.63)

5.3 Momentum Acceleration 175

we prove that it has the following properties:
A= (), (5.64)

R f A [x’;“ —(1— 6 — 0k — 0% — ele]
1

—|—ZA2 [xg“ — (1= 0, — O)xk — 0r%) — elx;] . (5.65)

Indeed, for Algorithm 5.3 we have

N =ik 4 PO 2<A1xlf+A2x§—l3) (5.66)
01

and

P ok B (Alxk+1 + AT - b) . (5.67)

With (5.63) we have

Ao g () (Alka + AT - b)
l

[I=

U (Alx’;“ + AxxA Tt — b) (5.68)

|Iw

i ﬁ ’Alkarl + AT —b 46, [A1 (Xl - Xl) + A (Xlé - iz)“ ;

where in = we use (5.67) and 2 is obtained by (5.66) and b = A% + Ak (see
Algorithm 5.4). Together with (5.63) we obtain

P 5 A [x’{“ — (1 =o)Xk — 01Xt + 0, (x’f - xl)]
1

+ 5 A [— (= oxh — o+ 0 (- %) |
1
where we use the fact that A;x} + Axx5 = b. So (5.65) is proven.
Since (5.68) equals A(x\ !, x5*1), we obtain (5.64).
Step 4: We now are ready to prove (5.49). By the definition of L(x1, X2, 1), we
have

i(x’f“,x’g“,x*) 0oL (%1, %2, A7) — (1 — 61 — o)L (xl,xz,x)

=71 () = =61 =601 (x}) = 011 (x)) — 621 1)

176 5 ADMM for Stochastic Optimization

+ 02 () = (1 =01 — 02 (%) — 12 (x3) — B2 ()
+(n A [= (=6 - ooxt — o1 — 1])
+ (x*, A [X (1= 0y — o)k — 0%, — 91x§]>.
Plugging (5.50) and (5.52) into the above, we have
E; L (x (L b X*) 2L (%1, %2, 1%) — (1 — 6 —6)L (X]f x5, X*)
< By (V=X (L) AL [- (-0 — 0% — 0% - 01x])
T E, <x* i () A [(1= 0y — 0y — 0%y — 91x3]>
—E;, <x"+1 — ¥ X (10 — o)Xk — 0%, — 91x’1‘>

G

—E <k+1— X (1= 0, — 00)xk — 0ok —9x>
iy Y2, X5 (1 2) 2 2X2 12(0{L2+ HAZHZ)

X" _y1H + B B <1+ bGZ)Lz H i _y§H }

L, (V- (xR A [(- 6 — et - 6% - 0ixi)

Ly
+ 2]Eik

+E;, (A - (XK+ §+1> ,Az[K = (1= 0 —)k — oo —91x§]>

1

~E, (x < KL gk k(1 gy —)xk — 0%, — 91XT>G
< k+1

k+1 k s *
X (1= 0y — o)k — 0%, — 91x2>
2 (aLeréS HAZH%)Ifeﬁl ATA,

P v [L (ol]

+ 9‘3 Elk <A2xk+1 AZyIEa

Ly
+ 2]Eik

A [KL (1 =0 —)%k — 0p%; — 91x1]> (5.69)

k+1
Ly o

i (X/IH’X/;H) _ ZAz(k1 Y2)

where in the equality = we change the term A (x

5.3 Momentum Acceleration 177
For the first two terms in the right hand side of (5.69), we have
(v =X (=) A [- -0 0xt — 00k - 0ixi)
n (x* hy (k1, ’5“) e [R (1 — 6 — 6y)xk — Or%s — 91x§]>

a i‘; (k* _ ik+1, Jet):k>

0
28 (

where = uses (5.64) and (5.65) and L uses (A.2).
Substituting (5.70) into (5.69), we obtain

2

~k
A —X*

I

k41 ~k+1 ~k
AT PRy

2
‘) , (5.70)

ElkL (k+1 /5+1’ X*) _ 92[~, (il, iz,)‘*) — (-6 — 92)[~, (x]f’ Xg’)‘*)

< 3 (I)

_E, (x (k+1 Y1f X’1<+1 —(1 -6y — 92)le — 0X| — 191X>1K>Gl

s el gk
X* —A

—E; |4

—E; |4

-]Elk (k+1 yé ’

k-’rl (0 k fad *
— 01 — 02)X; — Xy — 01X5
X2 (aLeréS HAzl\%)Ifeﬁl ATA,

1 2
kl k+1 k
S ey (14,) 1]

+ 9‘3 Ezk (A2xk+1 A2y,§a

Ly
+ in

A lx [KFL_ (1 =0 —)%k — 0r%) — 91x’f]>. (5.71)

Then applying identity (A.1) to the second and the third terms in the right hand of
(5.71) and rearranging terms, we have

E; L (x’{“, i+ x*) 0oL (%1, %.1%) = (1 = 6 — o)L (xh. %5, 17)

= o (W -»T)

k k = * 2
+ Hy1 — (1= 61 —)Xk — 6% —91X1‘
2 G|

~k+1 2
—E,

~k+1 ~k
R, AT - N

178 5 ADMM for Stochastic Optimization

1

2
~E;, x’{“—(1—91—92)x’{—92i1—91x’{H
2 G

1 2
+ Hk— 1—91—92Xk—92)~(2—91X*
2 [¥2 ¢ % W (aza+ £ 18213)1- f AT A

1 X 2
— E; X5 = (1 — 6 — 0)xk — 00%2 — 0,x%
k 2 2
2 2 («Lot+ £ 1A213)1- / AT A
e gk gk 2 e gk g 2
i 1 ik 2
2 1 SIAIZI- [ATA 2 2 £ 142 131- AT A

=+ Q‘iEik (A2X§+1 — Azyg, A1 I:XII—H — (1 — 91 — 92)le — 925(1 — 91XT]> .
(5.72)

For the last term in the right hand of (5.72), we have

e’i (A — Aoyh AL X! — (1 = 61 — o)x — 01 — onx)

[I=

Z (Alefrl — Apv — (Azy’é — A2V) ,

AL = (=61 — o)k - 6% - 01x(| - 0)

2
U 2@ [Ao — Aoy + Ay [XEH = (1= 01 — o) — 0251 — 01x]|
1
B H k+1 2. B k 2
~ 5oy (AT = Aoy Aoy - Ay
20, 2X, v+ 26, 2Y> 2V
_ B HAzyk —Av+ Ay [Xk+1 —(1-61— 92)Xk — 0hX) — 91X*:|H2
201 2 1 1 1
c 01 sk+1 ck2 B k1 2 B ' 2
o T A= A A ot - axy]
28 20, 2X5 v + 20, 2Y2 2V
2
— 2§1 HAzyg —Av+ A [X11<+1 —(1 -6 — 92)le — 0X| — 91XT]‘ ,

(5.73)

. a
where in = we set

v=(1-6 —0)x5 + 6% + 01X,

5.3 Momentum Acceleration

L uses (A.3), and = uses (5.65). Substituting (5.73) into (5.72), we have

E,kL(k“ ’;“,x*) 6oL (%1, %, 0%) — (1 =61 — o) L (x5, x6,07)

~ck+1

A =T

)

—E;,

=) (H* _**
ﬁ

2
k k s
+) Hyl — (1 =61 —0)x] — x| — 91X>1k HGl

1

- Z]Eik

1 k _ _ k _ pg. *
+) Y5 — (1 =01 —02)x5 — 02Xy — 01X,
B |5+ — (1 — 601 — 62)xb —

1 2
Atk
E;, [|IxiF

2 T e e g AT
1 gt
B s o[
2 Y2 S 1A= £ AT A
B k
— 20, Ei ||A2y; — Aoy

2
X (1= 0y —)xk — 0% — 91x’f‘ .

lad *
02X2 — 01X5

1
2

(Lot § 18aI3)1

(aLot £ 1A213)1

2
AL X = (1= 61 = 6% — 051 — onx]|

179

(5.74)

Since the last three terms in the right hand of (5.74) are non-positive, we obtain

(5.49).

O

For the Xk defined in (5.63), besides properties (5.64) and (5.65), we further prove

that it has the following property.

Lemma 5.6
NN
=1, s>
Proof
<04 =0 Bl—061y)
A =+ o ’ (A1X§”_1,1 + AoX{' | 5 — b)
,S

0

~ 1
23X, +B (91 T 1) (Ax{)+ Aox{) = b)
S

(5.75)

180 5 ADMM for Stochastic Optimization

= X;”il — B =1 (Aix{" ;| +Ax(" |, —b)

1
+h (91 T 1) (Arx{")+ Aox{)) = b)

A+ 91"?71 (A1x{ | |+ Aox{" |, —b)
SR (:3 - 916—1) (Ax{Ly | +Aox("; , —b)
=i
where = uses (5.63) and x? = xg”fl, L uses the fact that 011“‘ = 91,,171 + T, = uses

~0 _
Aoy = A0+ B — 1) (AIXY | + AoxT, — b)

in Algorithm 5.4, and 4 uses (5.67). m]
Now we can prove the following result.

Theorem 5.3 For Algorithm 5.4, we have

1 ||[Bm —1)O@2+6015)+8 ,, .
E[zﬁ ‘ " (Aks — b)

|
+E [(m - 1)(902;: o (J(&s) — J(x*) + (A*, Aks — b>)}

_Bm— 16

~0
Ax) —b) + Xy — A"
f10 (X~ b) + 1,

= G (7 (x6) = 7 () + 1% AX) — b))

0 -0
194 P 9101’0) (Ax)—b) =2

1 2

ey

*

1 0
X —X
+2H 0.1

(Or.oL1+B8lA113)I-BAT A

Lo 2
SR |
5 |F02 7 %2 [(mi}z)01,0L2+ﬂnAzH%]l)

1-6 —1)6.
where C3 = "Ogl(om)62

5.3 Momentum Acceleration

181

Proof Taking full expectation over the first k + 1 iterations for (5.49) and dividing
61 on both sides of it, we obtain

1
0

E L

1
<
=9

8

k1
(4"

0, - 16106 -
i+ x*) L&A - T PEL (x’{,x’g, x*)
0 6
~k 2 ~k+1 2
(x | E, R o)
1 k k 2
[yl -1 =601 =-60)x| — 925(1] —X]
o (Lit+£ 1AI3)1-/ AT A,
LN s 2
) [xﬁ — (1=) — O)xk — ezil] —xt
! (Li+ & 1AR)1- £ AT A
1 k k 2
) ¥ - (=6 — 0% - %2 | - x
! (Lt f 142131
1 2
, (X = (1 =01 — o)k — 2% | - 5 ,
1 (aLo+f 1A213)1

(5.77)

where E denotes taking full expectation on k + 1 inner iterations when fixing the
first s — 1 epochs. Since

V¥ =xK 4+ (1 -6, —) (xk—xk_l), k> 1,
we obtain
Ay 027 - L=01 =0 =/, &
" E L <X1 x5, k*) ~ o L (X1, %2, 1%) — 91 E L (xl, X5, k*)
1 A 2 ~k 2
< (IE | A)
28
0 1 ~ 3 2
n ZIE,S [x/f — (1= — f)xk 1—92x1] —xt
o (L1 £ 1A1B)I- £ AT Ay
0 1 i 2
~ DB |, M - a—e—ext - x| - xi
2 e (Li+ £ 1A113)1- £ AT Ay
61 Lok k—1 < * ?
+ B |, [-0 -0 - k] - x5
1

(aLo+ 1A213)1

182 5 ADMM for Stochastic Optimization

2

1 .
N [x’;“ — (1 -6 —)%k —92x2] —x .
alatg A7)

k> 1. (5.78)

Adding back the subscript s, taking full expectation on the first s epochs, and
then summing (5.77) with k from O to m — 1 (for k > 1, using (5.78)), we have

lg (L™ 1) — L(x*, %)) + 02+ O1s mi E (L (xk x*) —L(x* x*))
1,s § ’ el,s =1 S '

1—6,,—6 mo -
< 91’s E (L (X?v ﬁ) - L(x", l*)> to “E (L (%.1%) — L (x",17))
1,s Ls
1 0 ~ 0
+ E [ys | — 62Xg1 — (1 = 01,5 — 62)X; 1]
2 || 61s ’ ’
2
(1.0L1+B1A1I3)1-BAT A,
1 1 m ~ m—1
— B [xn —exa —a -6 —ex!]
2 91,3 ” ' ’ >
2
(15 Li+BIALI)T-BAT A,
1 1 0 ~ 0 * g
+ B, [Wa—oxa— (- —ox,] - x
Ls (1,5 L2+B1A213)1
el U lxn — o5 1= 65— 0)x"; | — x5 2
LBl [X2—02%s2 - (I =015 —0)x;, | —%; ,
Ls (et Lo+Bl1A213)E
1 . 2 . 2
~|—2ﬁ<IE A —E‘xf—x*) 5 >0, (5.79)

where we use L(xf, A*) and L(X;, A*) to denote L(X‘IYC 1> xf 5> A%) and L(Xg, 1, X 2,
A1), respectively. Since L(x, A*) is convex for x, we have

mL(Xg, ")

~ 1 (T — 1o\ T—DOs\ = k| s
=mL (m [(1— 0)xsl~|—<1~|— (m—l)@z)kZ::lXSI:|’x)

(t — Do m ok (T —)b] PR
< [1— . :|L(xsl,k)+[1+ (m_l)ez}ZL(xsl,x).

5.3 Momentum Acceleration 183

Substituting (5.80) into (5.79), and using xg’ﬂl = xg, we have

1 02 + 61 =
m * * * 58 k * * *
o (L (A7) L a) + 7 k§:1E(L<xs,x)—L(x,x))
1 — 161 m * * 9%
<, BR(LA) - LK)
,8

-1 -1
6+ 101

o k; E (L (x{;_l, x*) — L(x*, x*))

1 1 3
+ 2]E o, [ygl — X510 — (1 =015 — 92)X?,1]
2
(01.5sL1+B1A113)1-BAT A,
1 1 m - m—1
—,E[, [x&1 — 02,1 — (1 =01 — O)X"]]
2
(O1.sL1+BIALI3)I-BAT A,
1 1 0 N 0 * g
LB, [Wa—0ko— - —oxd,] x5
Ls (1,5 La+BlIA2[13)T
Yol U Ixm —oaien— (1 — 61 — o)™ .|’
—,E, [Xs,z_ X2 — (1 = 01,5 — 02)X(5]—Xz
1,s (@815 La+BlIA2[13)I
1 ~0 2 ~ 2
+ Elx, =A% —E X" —a*]"), s> 1. (5.81)
2ﬂ S S
Then from the setting of 61 y = CJrlTS ,where c = 2, and 9, = rz’n_fl) , we have
1 1—16
_ T01,s+1 , 5 > O, (5.82)
01,5 01,541
and
0 +6) 0+ T 0154
h+0is O 1= m=17LSH oS, (5.83)

el,s 01,s+1 01,s+1

184 5 ADMM for Stochastic Optimization

Substituting (5.82) into the first term and (5.83) into the second term in the right
hand side of (5.81), we obtain

1 62+ 615 "
PR L) 5 R ())
S T k=1
1
< B - L)
O1,5-1 ‘
9 O m—1
L + 01,51 Z E (L (X";,l, X*) —L(x",)‘*))
Ors—1
1|1 -
Bl ¥ = 0% - (=61 —6x)]
2 |61
2
(OrsL1+B1A1 I3)1-pAT A,
1 1 - -1
JE ‘ 6. [x;?fl — %y — (1= 015 — 62X]
2
(rsL1+B1ALI3)1-pAT A,
1|1 . ?
+ B H b Y2 R — (=015 —0x0, | - x3
Ls (1.5 L2+B1A2I3)T
1 1 m ~ m—1 * 2
—LE|, [—eka - —o -0y | - x
Ls (b1, sLa+BlIAIZ)E
1 . 2 . 2
+ o (B[R —n | —E & —2]7). sz (5.84)
2p : :
When k = 0, for
Yoo = (1 — 02X + 02% 1
0 -
o[- oox = =0 o ok,
,S
we obtain
1 .
[x = 0%, — (1= 61, — x|
Ol,s

1

=, [k - - —exd,). (5.85)
1,5+1

5.3 Momentum Acceleration 185

Substituting (5.85) into the third and the fifth terms in the right hand side of (5.84)
and substituting (5.75) into the last term in the right hand of (5.84), we obtain

1 m 4k * 4k 92+91,Sm_1 k 4% * 4k
o B(LOAT) =L (¢ 2) + SE(L (X A) - L (x0))
1,s

Ol’s k=1

1 * * *
<y B - L)

O S (1) - L)

1 1 ~ _
+ 2E o, [X;”_Ll — X 11— (1 —615-1— 92)X;"_11,1]
2
(15 L1+BlIALIZ)1-pAT Ay
1|1 o
~2E . (X1 = 6% = (1 = 01, — 0%
2
(rsL1+B1AII3)1-BAT A,
1 1
+2IE . [XA — 60X 12— (1 = 0151 —)X, 12]
2
(cbr.sLa+BlA2I3)T
1 1 m 3 m—1
— E [xsz—szsz—(l—Gls—Gz)xz]
2 o L ’ ’ *
2
(61,5 La+B14213)1
1 ~ 2 ~ 2
+ 28 <E A A =R —ar) s> 1.

Since ”X||12V11 > ||X||12V12 if My > My, and 61 s—1 > 0 4, we have

1 62+ 015 "
o E(L(AT) = L)+ 7 SUE(L (%) - L(xA))
1,s 1,s =1

1

< U BEELaY) - L)
01,5-1 ‘

186 5 ADMM for Stochastic Optimization

92+91,S*1 — k * * q ok
i ZE(L (X) - L (x0%))

k=1
1 1 m ~ m—1
+ 2E 61 [XS_M — X 11— (1 =01 51— 92)Xs_1,1]
2
(rs-1Li+BIALI3)1-pAT Ay
1 DR P 1— 615 —6)x"!
2 e, Xg — X5 1 — (1 = 015 — 02)x
2
(rsL1+B1AII3)1-BAT A,
IE 1 m ~ 1 m—1
+ 2Elo ., [Xs,m —0Xs—120— (1 — 01 5-1 — 92)Xs_1,2]
2
(br.s-1 Lo+ B1AI3)T
1 1 m < m—1
— E [xsz—Ozxsz—(l—Gls—Gz)xz]
27 o L ’ ’ s
2
(61,5 La+B14213)1
1 ~ 2 ~ 2
>y <E A A =R -) s> 1. (5.86)

When s = 0, via (5.79) and using
0 < 0 0 < 0
Yo.1 =X0,1 =X 1, Yoo =2X02=Xp, and 610> 0611,

we obtain

DE@ o) - Lxnar)) 4 200 e (L (%627) = L (x.29))
f1.0 oo 5

_ 1= 010+ (m— 1)

< o (L (xg, x*) —L(x", x*))

4! H 0 _ |’
X, — X
21700 T (o1 ozi+p1A113)1-pAT A,

5.3 Momentum Acceleration 187

1
01,0
2

1
_E‘
2

[XB'fl —hXo,1 — (1 =010 — 92)X6'ff1]

*
- X

(11 L1+BIA1I3)1-pAT A,

*

1 0
T 62—

(broLa+BlA2I3)T

1

01,0
2

[ngz — %02 — (1 =010 — 92)ng51]

.
- E
2

*

2 2
(a1.1L2+B1A213)1

n 1
2p
where we use 61 ¢ > 611 in the fifth and the eighth lines.
Summing (5.86) with s from 1 to S and adding (5.87), we have

~0 2 ~
Ro—rt| - E[iG -

2
) , (5.87)

1
91,SE (L (xg,A") — L (x*,1%)) +

1—-6 —1)6
< 1,0 —;- (m)02 (L (X8’ k*) _L (X*7 X*))
1,0

2

(oroL1+B1A1I3)1-pAT A,

2

(broLa+B1AIR)T

1
T [62—x;

1
T 61—t

2

L (s . 2
! ! n X m—1
— ZE Ql’s [XS’l - 92XS11 — (1 — el,S — OZ)XS,I]
2
_ XT
(o1.5L1+B1A13)T-pAT A,
1E ! m X 1 m—1
2 oL [Xs,z —0Xs2 — (1 =015 — 02)Xg)]
2
_ X;
(61,5 L2+B14213)T

1 =610+ (m — 1)0, 0 4% x 1%
< 010 (L (XO,X)—L(x , A))

188 5 ADMM for Stochastic Optimization

2 2

+ HX
(oroLi+pIAIB)I-pAT A~ 2 1702

*

1 -X
2
(cbroLa+B1AI3)T

1 0
© -

2 ~
—E |i§ -

(S)

Now we analyze ||):VS” — A*||2. From (5.75), for s > 1 we have

N
A <0
M ek ckel
=Y (xs Y)
k=1
m
a 1 k_ _1—91’3—92 -1 ~ 0, o
Lp k; [. (axt —p) o s (axi~' —b) 6. (A% b)}
—1
_ B m BB+ 015 5 -)
= 01’8 (AXS b) + QI’S kXZ; (AXS b
_ .3(1 —gl,s - 92) (Ax;”il _ b) B mﬂgz (Ais ~ b)
1,s Ls

B m B(O2+ 61) "
L ‘ (AX]' —b) + 29“ ! Z (AX? — b)

k=1
_ /3 [1 _91,s _91('5 1)91 K (AXm_ _ b)
.S
92 + 0 m_l
0“ Z AxE| b)}

-1

N (92+9n>’”21(AX “b)

IR k=1

m—1
B m B2+ 6015-1) «
~(Ax, —b) - o /; (Axs_l - b) , (5.89)

5.3 Momentum Acceleration 189

where = uses (5.65), L uses the definition of X;, and = uses (5.82) and (5.83). When
s = 0, we can obtain

Y
D ek k=1
=3 (fo-%7)
k=1
m
B X Bl —01,0—02) k-1 028 0
= Ax; —b) — ’ A —b)— Ax; —b
kz=:1 |:91’0< %o) 01,0 (X0) 91’0< %o)
B B(62+610) "
= Ax —b) + ’ Axf —b
91,0 (0) 91,0 l; (0)
Bl — 010+ (m — 1)6,] 0
— ’ Axy;—Db). 5.90
91’0 (X0) ()
Summing (5.89) with s from 1 to S and adding (5.90), we have
Ay —aF
=5 — kg +ip—2*
P 0 m—1
_ B (AX2 — b) + B(62+ 01,5) ()
01,5 01,5 =
B[1 =610+ (m—1)6] 0 <0
— ’ Ax, — b A
01,0 (X0)+ 0
ﬂ(l —61,0) N
—b)—A
01,0 (%0)
a (m—102+6019)B+8 ,, . =0
= ’ Axg —b) + A
0.5 (S) 0
B(m — 1)6, 0 «
— Axp —b) — A%, 5.91
910 (X0) 5-91)

where the equality = uses the definition of Xg. Substituting (5.91) into (5.88) and
using that L(x, L) is convex in X, we have

E[1 Hﬂ(m—l)(92+91 S)+.B(
28

s—Db
01,s)

_Bm—1)0s 2}

o (Axg—b) +3; -

190 5 ADMM for Stochastic Optimization

— 1) 6 1 A
+E [(m YO+09+H T ¢ geam - Lix x*))}
01,5
1-6 — 1o 1 - 2
< 1o+ Om)62 (L (xg, X*) —L (x*, l*)) + 18 —A*
61,0 2p
1 2
+ HXO —x}
21700 T (o oz1+p1a113)1-pAT Ay
1
+ HXO - x5 .
21702 "2 (et oLo+l1A213)E
By the definitions of L(x, A) and):8 we can obtain (5.76). |

With Theorem 5.3 in hand, together with the definition of 6; ; we can easily
obtain the convergence rate of Algorithm 5.4 to solve Problem (5.45).

Theorem 5.4 The convergence rate of Algorithm 5.4 to solve Problem (5.45) is
O (1/9). Specifically, we have

) 01,8
IELX,X* —LX*,)‘* < ' C
(L(%s,A%) — L() m—1)O+015)+1
and
) 0
B ks —b] < o+
Bm —1)602+01,5) + B
where
1 =010+ (m—1)62 0 i 2
‘o ’ (L(X,X*)—Lx*, *)+ Ao —A*
01,0 ’ () 7 0
| 2
+y -
5 X0 =% (r.0L1+BIALI3)1-BAT A,
1
+, [-
2 0,2 2 (a9|,0L2+,BHA2H%)I
and

Cr = J2BCy + H B(m — 1)0,
01,0

(Ax)—b) —3g+»*

5.4 Nonconvex Stochastic ADMM and Its Acceleration 191
5.4 Nonconvex Stochastic ADMM and Its Acceleration

In this section, we consider stochastic ADMM in the nonconvex setting. We will
first extend the multi-block Bregman ADMM algorithm (Algorithm 4.1) introduced
in Sect. 4.1 and then propose acceleration by the VR technique.

5.4.1 Nonconvex SADMM

We consider stochastic ADMM in the nonconvex setting. We first study a two-block
linearly constrained problem shown as follows:

1§1iyn (fx)+g(y), st. Ax+By=hb, (5.92)

where we allow f(x) to be an infinite-sum of individual terms, i.e., f(X) =
E¢ F(x; £). We consider the following assumption.

Assumption 5.1 f and g are Li-smooth and L,-smooth, respectively. Moreover,
the variance of stochastic gradients for £ is uniformly bounded by o, i.e.,

Ee||[VF(x, £) — Vf(x)||> < o2 for all given x.

We consider the following update rule to solve (5.92):

- Ak
X =xk—y |:Vf(xk) + BAT (Axk +By* —b+ p)} : (5.93a)
2
y**! = argmin <g(y) + (x", By> + g HAxk+1 +By — bH + Dy (y. yk)> :
y
(5.93b)
Mt Zak 4 (Axk+1 4Byt — b) 7 (5.93¢)

where V £ (x) is a stochastic estimator of V f (x) given x* and has the form that
~ 1
VI =) VFEL 8,
ey

1y with a size of § is a mini-batch of indices randomly drawn, and Dy is a certain
Bregman distance. We summarize the above algorithm in Algorithm 5.5.

192 5 ADMM for Stochastic Optimization

Algorithm 5.5 Nonconvex Stochastic ADMM (Nonconvex SADMM)
Initialize x°, yO, 20,
fork=0,1,2,3,--- do
Update x**+1, y**1 and Ak+! by (5.93a), (5.93b), and (5.93c¢), respectively.
end for

Because the indices in Z; are drawn independently, we have

2
EVF) = VA and By |V - V))(2 < ‘; , (5.94)

where the expectation is taken under the condition that the previous k iterates are
known.
The augmented Lagrangian function is

Ls(x.y.A) = (%) +g(¥) + (h. Ax + By — b} + g |Ax + By — b|]*.

Then Lg is Li-smooth with respect to x and Lj-smooth with respect to y,
respectively, where Li=L+ ,BIIAH% and Ly = Lo + ﬁ||B||%.

We show that under Assumption 5.1 and the surjectiveness of B, the above
nonconvex SADMM algorithm can find an e-approximate KKT point in O (e ~*)
stochastic accesses of gradient in expectation.

Theorem 5.5 Assume that Assumption 5.1 holds and there exists 1 > 0 such that
IBTA| = Al for all A. Set

nelOE?), 1/L1] and S=n -0 %) ezt

Pick ¢ to be p = O(1)-strongly convex and L = ©O(1)-smooth, set B >

2 2
24(Llf24;2L) _ O(1), and define the Lyapunov function:
& = Ly y 2 + O Iyt -y
]
—1,.-2

Then after running Algorithm 5.5 by K = n~" €™~ iterations, we find an O (€)-
approximate KKT point in expectation. Specifically, letting (X,y, L) uniformly
randomly taken from {Xk,yk,xk},le, defining D = ®° — ming>o E®*, and

5.4 Nonconvex Stochastic ADMM and Its Acceleration 193

assuming that D is finite, we have

722
B[A% + By — b|” < ; (? w17) — 0,

s e 4L2 (D Lin’c?)
E|Vg® +B A~ < + = 0(¢), and
Jo K 28

- . ~ K+1 D Zlnaz
E|v ATX? <2 2 INE;
IVF G +ATRIP =27 O (2406l ”2)<n(1<+1)+ -

= 0(),
where I denotes taking expectation for all the randomness in Algorithm 5.5 and the
selection of (X, ¥y, A).
Proof By the L{-smoothness of L g with respect to x and Proposition A.6 we have
Lﬁ (Xk+1, yk’ Xk)

Ly
2

2

< Ly, v 00 + (Tl p 8, v, 40, X x4 T b x|

A
= Lp(x¥ v a0
— i (TLp ¥4 A0, VL, yE 49 + 9 () = £ x))

Lin?

S ook
T,)+ V) —

where in < we plug in the update rule of x*. Taking expectation for V f(x¥)

conditionally on the previous k iterations and using (5.94) and n < Zl we have
1

EeLp(x*H1 yk Ak

<L,g(x y A — HV L,g(x y lk)H
N O

)H2 | Lure? (5.95)

< Lp(xk,yk, a0 —) o

194 5 ADMM for Stochastic Optimization

From the update of y, we have

P
) Iy = yFI17 < Lp* T yF Ak — Ly yEH Ak, (5.96)

From the update of A, we have

1

Adding (5.95)-(5.97) and taking full expectation, we have
n 2.p 1
R e e L S N

Pino?
< ELp(x*, yk, 0 — ELp(xk !, y* ! ak+l) 4 1;7S . (5.98)

On the other hand, using the same argument as (4.4) and (4.5), we have

<3 (L34 L2) Iy =y P 3021 -y R (5.99)

Taking full expectation on (5.99), multiplying its both sides with 2/(u?8) and
adding it with (5.98), we have

n 2 [p 6LI+12L7
JE | VaLp(x yh 45| +<2— . By -y

u*p
1 k+1 k)2 k k+1 ilﬂzaz
—I—ﬁEHx —AY)° < E®* —E® T + 2g (5.100)
24(L3+2L?)

Summing (5.100) fromk =0, --- , K — 1, and using 8 > , we have

n2p

1 7 K—1 2 0 1 K—1
O E|VaLpod y ab [T+ Y B -y
k=0 k=0
1 1 L17720'2
Ejak+! — ak)?) 5.101
t ok Z || || ’s (5.101)

5.4 Nonconvex Stochastic ADMM and Its Acceleration 195

Using the same argument as (4.6) and recalling that (X, y, 1) are uniformly randomly

taken from {(x y Ak) } k1> Ve obtain

K—

D HVg(y) n BTxH Z E HVg(ka) 4 BT AkH! H
* 2 412 (D Lin?c?
b LI L +)
= p \K 28

(5.102)

From the update of A, we have

£ A%+ By — b| = Z |axt+1 4 Byttt b
k=0

K— 72 2
D Lin‘o
E xk+1 xk 2)
ﬂzK §j I I ﬂ PR
(5.103)

By the update rule of x, we have

B HVf(i) +ATXH2

K
1 k Tqk 2
KZ_:IE ‘Vf(x)+ ATA H
1 K 2
— Z]E‘VXng(xk,yk,xk)—,BAT(Axk~|—Byk—b)H
k k=1
, K 5 | Kl s
< Y E|Vekath yh A0 [T 21A08 Y B [aEH -]
k=1 k=0
2(K + 1)

< S
< K+1Z sk, ¥k b

K+1
2 k+1 k
s

K+1 2 D Lino?
<2 2 A)
<2 0 (24l ||2)[n(K+1)+ o

196 5 ADMM for Stochastic Optimization

where the last inequality is obtained by summing (5.100) from k = 0 to K,
analogously to (5.101). So the proof concludes. O

From Theorem 5.5, we know that the total access of the stochastic gradient of f
and the updates by g will be no more than O (¢) in expectation.

5.4.2 SPIDER Acceleration

The Stochastic Path-Integrated Differential Estimator (SPIDER) [4, 5, 8] technique
is a radical VR method that is used to track quantities using reduced stochastic
oracles. For generic L-smooth stochastic nonconvex optimization, SPIDER can
achieve the optimal O(e~3) expected complexity to find an e-approximate first-
order stationary point. This result is different from variance reduction methods in the
convex case, as the latter can only accelerate the convergence rate for the finite-sum
problems. We also note that for the finite-sum problem with » individual functions,
SPIDER can improve the complexity to O (min(n + n'2e=2 e73y).

In this section, we apply the SPIDER technique to accelerate the nonconvex
SADMM algorithm. We consider a multi-block linearly constrained problem shown
as below:

o min (Z ﬁ(xi>+g(y)>,
R V|

m
st. > Aixi+By=b, (5.104)
i=1

where f; (x;) = Eg, F; (x;; &) for i € [m], under the following assumption.

Assumption 5.2 g is Lo-smooth. For each i € [m], F;(x;; &) is L;-smooth with
respect to Xx; for all &. Moreover, the variance of stochastic gradients of f; is
uniformly bounded by o2, i.e.,

Ee, | VFi(xi, &) — V.f; (x;)||> < o2 for all given x;.

The iterations to solve (5.104) go as follows:

Xi,“rl — x{? — n[@fl (X{C)

k

A
+,BAI-T ZA/'X];J'_l—FZA/’Xl;*I—Byk—b‘F

5 i|, i €[m],

J<i j=i

(5.105a)

5.4 Nonconvex Stochastic ADMM and Its Acceleration 197
2
y**! = argmin (g(y) + (Xk, By> + /; HAX"Jrl +By — bH
y

+ Dy(y, yk)>, (5.105b)
N = g (AXEH! 4 By — b)), (5.105¢)

where Dy is a certain Bregman distance and for simplicity, we define

T
x:(xlT,-u,xZ,;) and A=[A,---,A,]

We summarize the above algorithm in Algorithm 5.6.

Algorithm 5.6 SPIDER Accelerated Nonconvex Stochastic ADMM (SPIDER-
ADMM)

Initialize x?, i €[m], yo, A0
fork=0,1,2,3,--- do

Update x{ ', i € [m], y**1, and A¥*! by (5.105), (5.105b), and (5.105¢), respectively.
end for

We will choose a more sophisticated gradient estimator \% fi (xﬁ.‘) as follows:
* For a certain hyper-parameter ¢, if the iteration k is divisible by ¢, then

Vfi (xf) = 511 Y VF (Xf'c,éfi),

&iely,

where 7y ; with a size of S; is a mini-batch of indices randomly drawn.
¢ Otherwise,

v () = sl SZZ [VF (x&) = VE (X 6) |+ Ve,

where 7 ; with a size of S is a mini-batch of indices randomly drawn.
We have the following lemma that bounds the variance of the estimator \% fi (X{.C).

Lemma 5.7 Under Assumption 5.2, letting ko = |k/q|q, we have that for all k =
0,---,K,

. 2 12 Kk - o2
IEHVf,- (xf)-Vﬁ(xf)H <Y -1+ (5.106)
52 Lt Si
=Ko

198 5 ADMM for Stochastic Optimization

Proof When k is divisible by g, because the indices in Zy ; are drawn independently,

by the bounded variance assumption, (5.100) is true. For k # |k/q|q, by taking

expectation conditionally on previous all updates before xf.‘, we have

Ey,i Hﬁfi (Xic> — Vi (Xf) H2

Slz Z [VFi (Xf 51’) —VF; (Xfil’ 51’) - (Vﬁ (X{(> —Vii (Xrl))]

&i€Ty,i

() - ()

= Eg i

2

= Ni
Y !

where [Ey ; stands for taking expectation conditionally on all previous updates before
k

..a
i,1n=weuse

[(.8) 9 (3 7.) (9 () - (4) 0

b c
in < we use Proposition A.3, and in < we use the assumption that individual F; is

L;-smooth. Then by taking full expectation and recursively using the above equality
from kg + 1 to k, we have (5.106). |

X

Moreover, the augmented Lagrangian function of Problem (5.104) is

Loty) = fix) +8() + <x, > Aix; + By — b>
i=1 i=1
2

B m
+2 ZA,’X,’—}—By—b .
i=1

5.4 Nonconvex Stochastic ADMM and Its Acceleration 199

We have that Lg is Zi-smooth with respect to x; and io-smooth with respect
toy, where L; = L; + ,3||A,'||% and Lo = Lo + ﬁ||B||%. We show that under
Assumption 5.2 and the surjectiveness of B, the above SPIDER-ADMM algorithm
can find an e-approximate KKT point in O(e™3) stochastic accesses of gradient
for f; and O(e~?2) accesses of gradient for g in expectation. (Note that we should
sample S functions in each of the O (e72) iterations.)

Theorem 5.6 Assume that Assumption 5.2 holds and there exists 1 > 0 such that
IBTA| = Al for all A. Set

=0, $H=0@", ¢g=0"), and

1 1
17 = min ~ = 0().
2max;epm{Li} Zmaxie[m]{Li}\/Q/SZ

Pick ¢ to be p = O(1)-strongly convex and L = ©O(1)-smooth, set B >

2,572
24(L11)2J;2L = O(1), and define the Lyapunov function:

o =1L (Xk k)‘k) + 6L I k _ k—1||2

=L A ,U«2/3 y y .

Then after running Algorithm 5.6 by K = @(e~2) iterations, we can find an
O (¢€)-approximate KKT point in expectation. Specifically, letting (X, §, 1) uniformly
randomly taken from {Xk,yk,kk}le, defining D = ®° — ming>o E®X, and
assuming that D is finite, we have

IA

o 1
E A%+ By —b|’ ,3(1{ m2651"> 0,

A

Evem + 8712 < X (24" 2 0@, ana
= €7), an
8 N - K+1 D mo®n | 4o
EIV f (X; AT). 2 <4 Ci
IVAGD+ AT =4 G+ 28 St

= 0(?), ielm],
where

8
Ci= +BIAiI3+8np*(m + 1) |A; 13 max |A; 113
n Jj€lm]

877qu.2

4
+ 7 B2m + DIAZIBIS +
P 52

=0()

200 5 ADMM for Stochastic Optimization

and E denotes taking expectation for all the randomness in Algorithm 5.6 and the
selection of (X, y, L).

Proof By the L;-smoothness of L g with respect to x; and Proposition A.6, we have

k1 ok ok gk
Lg (Xj-;"xj>i*y A)

<Lg (Xk+1 <k y’ﬁk")

j<ir Xjziv
ok koK) kel ok L e
+<inLﬁ (Xj<i’szi’y oA)’Xi _Xi>+ o X T H
L1y (xﬁt}, X ¥, A,k)
_1 k+1 _ Lk (kY g (K k+1 _ Lk Li k+1_k2
+ . X; X;)+ Vfilx; Vilx),x; X;)+) X; X;
b k1 ko ok gk 1L k1 k|2
SLﬁ<Xj<i’Xj2i’y’)‘>_ m 2 X; _XiH
T () = v g ()] 5.107
+2 fz X;) — fl X; s ()

b
where in = we plug in the update rule of xﬂ‘ and in < we use the fact that
<Vf,- (xf) -V (xf) , Xf“ - xf>

=3 19n () - ()] +)

2
Wt

For the y’s and the A’s updates, we have

P

LIV =y IP < Ly Ly AR — Loty AN 508

and

1
_ ﬂ ”xk+1 _ xk”2 — Lﬁ(xk+1, yk+1’ xk) _ Lﬂ(xk+17 yk+1’ xk+1)’ (5109)

respectively.

5.4 Nonconvex Stochastic ADMM and Its Acceleration 201

Summing (5.107) withi = 1,2, - -+ , m, adding it with (5.108) and (5.109), and

using that n < 2max,~gl[m]{ii}’ we have
m
A0 3] AR I M RO U
4y = 1% il T B
< Lﬂ(Xk, yk’).k) _ Lﬂ(Xk+1, yk+1’ A.k+1)
m
+”ZHW,~ (x’-‘)—Vfi (x]-‘)Hz. (5.110)
2 4 1 4 4
=

Using the same argument as (4.4) and (4.5), we have

=3(L3+L2) W = YR 3Ly -y R s

Multiplying both sides of (5.111) with 2/(u?B), adding it with (5.110), and using

2 2
,13224(L°j21‘),wehave
u2p
1zm: 1 ok? P” L _ k2 1||xk+1 Ak |2
i x|+, Ay oyt -
4n = ! 4 B

m

k k+1 1 = k Yk

< of _ gkt +2;“Vﬁ(xi)—Vﬁ<xi))‘ .
i=

By taking full expectation on both sides of the above inequality and plugging in
(5.106), we obtain

1 m
4n ;E

2 o 1
Xi;+1 _ XfH + 4E”yk+1 Y2+ ﬂ]E”)”kH — k2

k m 2
1 2 mo
SECDk—IECIDk“—i—ZS Y S L?E)xf—xf*lu + 2sn
2 pkot1 i=1 1
2k m 2
k k+1 , N MaXiem) Lj ¢ w—1]|? , mon
D DD D L I
2 t=ko+1i=1 1

(5.112)

202 5 ADMM for Stochastic Optimization

Summing (5.112) for k = 0to K — 1, using k — kg < ¢ and the boundedness of
D = ®° — miny> E®¥, and then dividing both sides with K, we have

1 ng maxiepm) L L? - k Y
Jr
") kel
K—1 | Kl
ZIEuy"*1 VAl R Y PR N
4 K k=0 'BK k=0
L Dyman (5.113)
- K 281 ’
By the value of n we have
1 max;epm{L? 1
_ ng maXiepm{L;} _ (5.114)
4n 25 8n
So using a similar argument as (5.102) and (5.103), we have
5 12 k-1 2
EHVg(y)JrBTxH _ Z]EHVg(y"“)JrBTWH
k=0
2 K-1 2 2
<t EHy"“ y"H2§4L <D+m6 ")
K = o \K 281

and

E|A%+By —b|’

| Kol)
e Z E HAXk+1 4 By<t! - bH
k=0

K-1 2

1 1 /D

= op DB -2 < +" 7.
pK p\k " 2s

Finally, by (5.113) and (5.114) we have

30) IR

k=0 i

5.4 Nonconvex Stochastic ADMM and Its Acceleration 203

By the update rule of xﬁ.‘, we have
f: (x{?) AT (Mg [YA 3 A Byt b

j<i jzi

1
_ (xf?“ _ xf‘) ’
n

which implies that
Vi (xf) + AT

— 1 (Xf+1 _ xf) _ AT (xk+l _ xk)
n

+AAL | A (4 x) +B ()

jzi
= (9 () = v ()]
So we obtain
[V () +a7 |
4
2

2 2
| R L LSy

+4p% | AT ZAj (x’frl — X’]‘) + By —yh

Jj=i
. 2
+4]9 (xF) = v ()|
4 2 2
< Xi_c+1 _ XﬁcH +4||Ai||% H;Jcﬂ _ ka
n

m
2
+4p%m + DIAJE Y 14,1 %! — x|
j=1

2
+4520m + DIAZIBIZ |+ - |

+4 [(%) - v (x{?)Hz. (5.116)

204 5 ADMM for Stochastic Optimization

Taking full expectation on (5.116) and summing the result from &k = 1 to K, we
obtain

S)« 75

1 K 2
3o () a1
k=1

[I=

2

A

1 _ gk

Xl 1

K
4 K+1 1
) 2B
ns K K~|—1k_0

K

K+1 1 kel _ k2

+41A13 > B M k]
K K+1k=0

K+1 1 &
2 .2 .2 k+l_ k
+45%m + DIAB max 147137 ¢ K+1,§;E“Xj X

K
K+1 1 2
2 I k1 ok
4B+ DIABIBET T SE -

k=0
4L Kk+1 1 & 2 402
+ ! ZE‘X’-{JA —xF| +
So K K+1 = ! S1
c K+1 D mo?n 402
K K+1 281 S

where the first equality = uses that (X, §, 1) are uniformly randomly taken from

b
{xk, yk, lk}le, < uses Lemma 5.7, and % utilizes (5.113) (similar to the proof of
(5.115)). O

From Theorem 5.6, we know that the number of access to the stochastic gradients
of f; and updates for y using g are O(¢~>) and O(e~?), respectively, to find an
O (e)-approximate KKT point in expectation. Compared with nonconvex SADMM,
both Theorems 5.5 and 5.6 require K = O(e~2) iterations to achieve an e-
approximate solution. However, SPIDER-ADMM only samples O (¢ ~!) stochastic
gradients, instead of O (e~2), for each iteration. We note that by using the same
argument in Sect. 4.1.1, the surjectiveness assumption can also be relaxed.

At the end of the chapter, we would like to remind the readers that when f; can
be written as a sum of finite n individual functions for i € [m], SPIDER-ADMM
can also find an e-approximate KKT point in expectation in O (n +nl/ 26’2)
complexity. Moreover, we note that for generic nonconvex optimization, SPIDER
is a more efficient technique compared with the traditional VR methods, such

as SVRG [6], in the sense that the latter can only achieve a complexity of
(0] (min (6710/3, n-+ n2/3e’2)).

References 205

References

1.

2.

10.

11.

12.

Z. Allen-Zhu, Katyusha: the first truly accelerated stochastic gradient method, in ACM
Symposium on the Theory of Computing (2017), pp. 1200-1205

A. Defazio, F. Bach, S. Lacoste-Julien, SAGA: a fast incremental gradient method with support
for non-strongly convex composite objectives, in Advances in Neural Information Processing
Systems (2014), pp. 16461654

. C. Fang, E. Cheng, Z. Lin, Faster and non-ergodic O(1/k) stochastic alternating direction

method of multipliers, in Advances in Neural Information Processing Systems (2017), pp.
4476-4485

. C. Fang, CJ. Li, Z. Lin, T. Zhang, SPIDER: Near-optimal non-convex optimization via

stochastic path-integrated differential estimator, in Advances in Neural Information Processing
Systems (2018), pp. 689-699

. F. Huang, S. Chen, H. Huang, Faster stochastic alternating direction method of multipliers for

nonconvex optimization, in International Conference on Machine Learning (2019), pp. 2839—
2848

. R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive variance

reduction, in Advances in Neural Information Processing Systems (2013), pp. 315-323

. J. Mairal, Optimization withfirst-order surrogate functions, in International Conference on

Machine Learning (2013), pp. 783-791

. L.M. Nguyen, J. Liu, K. Scheinberg, M. Takac, SARAH: a novel method for machine

learning problems using stochastic recursive gradient, in International Conference on Machine
Learning (2017), pp. 2613-2621

. H. Ouyang, N. He, L. Tran, A. Gray, Stochastic alternating direction method of multipliers, in

International Conference on Machine Learning (2013), pp. 80-88

M. Schmidt, N. Le Roux, F. Bach, Minimizing finite sums with the stochastic average gradient.
Math. Program. 162(1-2), 83-112 (2017)

S. Shalev-Shwartz, T. Zhang, Stochastic dual coordinate ascent methods for regularized loss
minimization. J. Mach. Learn. Res. 14(Feb), 567-599 (2013)

S. Zheng, J.T. Kwok, Fast-and-light stochastic ADMM, in International Joint Conference on
Artificial Intelligence (2016), pp. 2407-2613

Chapter 6)
ADMM for Distributed Optimization Shethie

In this chapter, we introduce the application of ADMM to distributed optimization.
We first introduce how to use ADMM, linearized ADMM, and accelerated lin-
earized ADMM to centralized distributed optimization, and give the corresponding
convergence rates. Then, we focus on decentralized distributed optimization and
show that the corresponding ADMM is equivalent to the linearized augmented
Lagrangian method, and give its accelerated version. Next, we introduce the
asynchronous ADMM. At last, we end this chapter by the nonconvex and the
generally linearly constrained distributed ADMM.
Consider the following problem in a distributed environment:

min £(0 =) fi(X), (6.1)

i=1

where m agents form a connected and undirected network and the local function
fi is only accessible by agent i due to storage or privacy reasons. We consider two
kinds of networks. The first one is the centralized network with one centralized
master agent and m worker agents. Each worker agent is connected to the master
agent. We will introduce this kind of network in Sect. 6.1. The second one is the
decentralized network, which does not have the centralized agent and each agent
only communicates with its neighbors. This kind of network will be introduced in
Sect. 6.2. All the agents cooperate to solve Problem (6.1).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 207
Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9840-8_6&domain=pdf
https://doi.org/10.1007/978-981-16-9840-8_6

208 6 ADMM for Distributed Optimization
6.1 Centralized Optimization

In the centralized network, we reformulate Problem (6.1) as the following linearly
constrained one:

m
min (X)),
{x,-%,z ;ﬁ(i)

s.t. X; =12z, i€ [m], (6.2)

so that we can use the ADMM type methods to solve it.

6.1.1 ADMM

Introduce the augmented Lagrangian function

m

Lxzl) =Y (ﬁ (%) + (hioX; —2) + ’; Ix; — z||2) . 63)

i=1

ADMM can be used to solve problem (6.2) with the following iterations (for
example, see [2, 3]):
2
.)

m
2K+ :argminz <<Xf, Xf — Z> + g ‘
=l
I « ko, Lok
= > (x,. + ﬂxi), (6.4a)

i=1

2
Xﬁ,“rl =argmin (f, (x;) + (Xf, X; — Zk+1> + ’g Hxi _ gkt H)

Xi

1
=Proxg-1 <zk+1 — ﬂxf) . ielm], (6.4b)
A 3k 4 p (xj.‘“ - zk+1> . ielml (6.4¢)

In the above method, the master agent is responsible for updating z while each
worker agent is responsible for x; and A;. Steps (6.4b) and (6.4c) are carried out
independently at each worker agent, while step (6.4a) is performed at the master
agent. At each iteration, the master agent collects xi.‘ and Xf from each worker
agent, computes the average, and sends z*! back to each worker agent. Then each
worker agent computes Xf“ and Xf“ in parallel. We present the above method in

Algorithms 6.1 and 6.2.

6.1 Centralized Optimization 209

Algorithm 6.1 Centralized ADMM of the master
fork=0,1,2,--- do
Wait until receiving xf and Af from all the workers i € [m].
Update z*+! by (6.4a).
Send zFt! to all the workers.
end for

Algorithm 6.2 Centralized ADMM of the ith worker
Initialize: x?, A2, i € [m].
fork=0,1,2,--- do
Send (Xf s lf.‘) to the master.

Wait until receiving z*t! from the master.
Update xf.{'H and A; +1 by (6.4b) and (6.4c), respectively.
end for

Now we discuss the convergence of Algorithms 6.1-6.2. Denote
(XTv"' 7X;1Z*7X*1“' 7x:;1)
as a KKT point of Problem (6.2). From Theorem 3.3 we have the following

convergence result.

Theorem 6.1 Suppose that each fi(x;) is convex, i € [m]. Then for Algo-
rithms 6.1-6.2, we have

_c 2VC [T, A2
“2(K+1) JBK +1)

Y HEH =3 A :
i=1

i=1

m
24/C
~AK+1 ~
D IRFT -2k <
i=1

TVBK A+
where
| K+1 1 K+1
SK+1 _ k ~AK+1 k
X; _K+1l;xl,ze[m], z _K+1];z,and

1 m m
C=, DI =1+ B Y I — XTI
i=1

i=1

210 6 ADMM for Distributed Optimization

Proof Algorithms 6.1-6.2 are a direct application of the original ADMM (Algo-
rithm 2.1) to Problem (6.2) by setting

X=1, y:(xfs"'sXT)Tv A:1m®ldv B:_Imdv

m

b=0, f(x) =0, and gy =) fi(x)

in (2.13), where d is the dimension of x;, 1,, is the vector of m ones, and ® is the
Kronecker product. O

Similarly, from Theorem 3.4 we have the following linear convergence result.

Theorem 6.2 Suppose that each f;(X;) is p-strongly convex and L-smooth, i €
[m]. Let B = /L. Then for Algorithms 6.1-6.2, we have
m
1 p
(zﬂ e e LA xjf||2)

i=1

-1
< 1+1\/M i bk a2 Pt - x2).
—_ 2 L = 2[3 1 l 2 1 1

6.1.2 Linearized ADMM

When each f; is L-smooth, we can also linearize f; in step (6.4b) to simplify the
computation, if the proximal mapping of f; is not easily computable. The iterations
of resulting linearized ADMM are as follows:
2
¥)
m

m
2K+ argminz ((Xf, Xf — Z> + g ‘
=l
1 Y
e m Z (Xi —|— ‘3)"1) . (653)

i=1

Xf'{+1 =argmin (f,(x,) + (X{F,xi _ Zk+l> + 1‘;)

X

2
x; — z¢t! H + Dy, (x;, X?))

2
X; —Xﬁ-{

. L
= argmin ((Vf,'(xﬁ-‘), X; — x£‘> +) ‘

2
+<Xﬁ-‘,xi - zk+1>+ g HX,- —zkHH)

6.1 Centralized Optimization

_ 1 k k1 oo oky qk ,
_L+ﬂ(Lx,.+,3z VD =AE), e lml,

M =l g (xfH =) e),

by choosing

L. -
Yi(xi) =) ;|17 — fi (x:).

We summarize the method in Algorithms 6.3 and 6.4.

Algorithm 6.3 Centralized linearized ADMM of the master
fork=0,1,2,--- do
Wait until receiving xf and Af from all the workers i € [m].
Update z*+! by (6.5a).
Send zFt! to all the workers.
end for

Algorithm 6.4 Centralized linearized ADMM of the ith worker

Initialize: x?, A?, i €[m].
fork=0,1,2,--- do

Send (xf, Af?) to the master.

Wait until receiving z€*! from the master.

k+1 +1 .

Update x;™ and A;" by (6.5b) and (6.5¢), respectively.

end for

211

(6.5b)

(6.5¢)

Similar to Theorem 6.1, from Theorem 3.6 we can also have the O(1/K)
convergence rate. We omit the details and mainly discuss the linear convergence
rate under stronger conditions. From Theorem 3.8 and using Ly < L — u, where
Y (x) = Y 7., ¥i(X;), we have the following linear convergence result.

Theorem 6.3 Suppose that each f;(X;) is p-strongly convex and L-smooth, i €

[m]. Let B = /WL —). Then for Algorithm 6.3-6.4, we have

m

1 177

i=1 2

1 -1
< |1+ _min H , H

3 2L—pn L—pu
- B
— 2

X i

1
(m I =271 +

1

1

XK — x¥)1? + Dy, (xF, x

1 B
D (g T =N D 1P 4 Dy 1)

{-‘)) .

212 6 ADMM for Distributed Optimization

6.1.3 Accelerated Linearized ADMM

Motivated by the results in Sect.3.3.2, we can also use the accelerated linearized
ADMM to solve Problem (6.2) to further improve the convergence rate of the
linearized ADMM. From Algorithm 3.6 given in Sect. 3.3.2, we have the following

iterations:

<k
i i +(1_9)X,'a

2 = argminzm: <X’-‘, xk — z> + po XK — 2|2
2 1 1 2 1

i=1

1 & 1
= (¥).
mi:l ﬂg

1 0
PO ,uw{»C + xf? - Vf,-(xi-‘) ~|—)»f.C + 86 xf? — 7! ,
[0 +u o

o
7 =0 4 (1 -0y,
= oxtt 4 (1 -)R,

AL =2k 4 e (xf“ _ zk+1> .

We summarize the method in Algorithms 6.5 and 6.6.

Algorithm 6.5 Accelerated centralized linearized ADMM of the master

Initialize: Z°.

fork=0,1,2,--- do
Wait until receiving xf‘ and Xf from all the workers, i € [m].
Update zt! and Z*! by (6.6b) and (6.6d), respectively.
Send zF*! to all the workers.

end for

Algorithm 6.6 Accelerated centralized linearized ADMM of the ith worker
Initialize: x?, k?, i € [m], and i?
fork=0,1,2,--- do
Send (Xf s Xf.‘) to the master.
Wait until receiving z*! from the master.

Update x 71 & 05T and wh! by (6.6¢), (6.6¢), (6.6f), and (6.6a), respectively.

end for

(6.6a)

(6.6b)

(6.6¢)

(6.6d)
(6.6¢)

(6.6f)

6.2 Decentralized Optimization 213

Table 6.1 Complexity comparisons between centralized ADMM, centralized linearized
ADMM (LADMM), and its accelerated version

Centralized ADMM Centralized LADMM Accelerated centralized LADMM

0(\/£logi) O(ﬁlogi> 0(\/£logi>
Denote

. (fi& = i) + (1.5 - 7))

i=1

92 - k 2 1 < k 2
g DX = X1+ 28 DI =P
i=1 i=1

From Theorem 3.12 we have the following linear convergence result.

Theorem 6.4 Suppose that each f;(X;) is p-strongly convex and L-smooth, i €
[m]. Let

=L an 9—\/“
01_4L, =L, an =\

Then for the accelerated linearized ADMM (Algorithms 6.5-6.6), we have

7
<|(1-— .
€k+1_< \/L>€k

We list the convergence rate comparisons of different centralized ADMM meth-
ods in Table 6.1. Similar to the comparisons in Table 3.2, we see that the accelerated
linearized ADMM is faster than the linearized ADMM with a better dependence on
the condition number L/u. The original ADMM has the same convergence rate as
the accelerated linearized ADMM. However, the original ADMM may need to solve
a subproblem iteratively at each iteration, while the accelerated linearized ADMM
only performs a gradient descent type update.

6.2 Decentralized Optimization

In this section we consider the decentralized topology. In this case, we cannot use
the constraints in (6.2) since there is no central node to compute z. Denote & as the
set of edges. Assume that all the nodes are ordered from 1 to m. For any two nodes i
and j, if i and j are directly connected in the network and i < j, we say (i, j) € &.
To simplify the presentation, we order the edges from 1 to |E|. For each node i, we

214 6 ADMM for Distributed Optimization

denote N; as its neighborhood:
Ni=1{jlG, j) e &or(j,i) €&},
and d; = |N;| as its degree.

Introduce auxiliary variables z;; if (i, j) € &. Then we can reformulate
Problem (6.1) as follows (for example, see [1, 10, 12, 14]):

m
min Y fi(x;),
Xi,Zij

i=1
s.t. X; = 1Zjj, Xj=1Zj, Y@, j) € &. 6.7)
That is to say, each variable x; corresponds to one node, while each variable z;;

(i < j) corresponds to one edge. The augmented Lagrangian function of Problem
6.7)

L(x,z,)A) = Zfi(xi) + Z (()»ij,xi _Zij>+<}’ijaxj - zj)
i=1

(i,j)e&

+§ lIx; — 211> + g”xj - Zij||2> .

6.2.1 ADMM

We can use ADMM to solve Problem (6.7), which consists of the following
iterations:

2
Xﬁ,“rl = argx?lin [ﬁ(xi) + - Z ((ij,xi — zfj>+ g ‘X,’ — zf»‘j)
Jii,))eé
2
+ Z <<y];, X; — z];i> + g ‘X,’ - z];i >i| (6.82)

HORIELS

k+1 . k k ,3 kel 2 ,3 il
zl.;r =argm1n<—<xij+yij,z,»j>+ 5 Hxi+ _Zl.jH +4 ij+ .

)

N N AL A T s
:2‘3 (kij + yij) + 5 (xi —i—xj) , (6.8b)
A= 1 (x{F“ - zf;“l> , (6.8¢)

yi =yl B (T -2, (6.8d)

6.2 Decentralized Optimization 215

Next, we introduce the result in [10] to simplify the above method by eliminating
variables z;;, A;j, and Yij-
Summing (6.8c) and (6.8d) and using (6.8b), we have

A ey =0, k=0

.. . O _ 0 _
Initialize kij =V = 0, we have

M+ =0 Vk>=0.

Plugging it into (6.8b), we have

1
24 =) (e+l +x’<+1), Vk > 0. (6.9)

We may initialize

From (6.9) and (6.8c), we have

A=k ’z (xj.‘“ - x’;“) . (6.10)

So we have

k+1 1
k+1
A + _‘Bzz(xﬁ—x;).
t=1
Similarly, we can have
k+1
ri = ﬂZ (=),
Note that we only define A;;, y; it and z;; fori < j. Now we define
Aij =V and z;; =z;; fori > j.
Then

k+1
1
A —,BZ (x -x) and 7! = 2(xit +xk+1)

216 6 ADMM for Distributed Optimization

forbothi < jandi > j.Sois (6.10). Thus (6.8a) can be simplified to

Xf“ = argmin [ﬁ(xi) + Z ((Xf‘] - ﬁlfj, Xi> + 'g [Ix; ||2>
Xi

J:i.j)eg

+) ((y],— 2xi) + ’;nx,nﬂ

J:(j,he&

=argmin | f;(x;) + Z ((,,,xi>+ g ||Xi||2>

X JEN;

=argmin | fi(x)) + Y ((xk/ — pzf; + Bxt, x,-> + §IIX,~ - x{-‘llz)

Xi JEN;

=argmin | f;(x;) + Z << (Xf - x];) , Xi> + §||Xi - X§||2>

Xi

JEN;
(6.11)
Denote L € R™*™ as the Laplacian matrix (Definition A.2) and D as the diagonal
degree matrix with D;; = d;. It is well known that L is symmetric and satisfies
0<L=<2D!
Define
x{
X=|: [er™ fx= Z fi i),
X
ol
v = Z Aij, and Y=1| ! | € R™*4,
JjeN; UT
m

Then we have

L/X=dx] -) xI,
JEN;

where L; is the i-th column of L.

1
lo<alLa =) Z(i,j)ea(“i - otj)2 < Z(i.j)eS (a? +a/2) =20 Da.

6.2 Decentralized Optimization 217

With the Laplacian matrix L and v; introduced, (6.11) can be written as

. d; 2
xf_“rl =argmin fi(xi)~|—(v{?,x,> <Z L,/x],xl> 'th xi—xf
X;
JEN;
=P e B N N T ' 6.12
= rox(ﬂdi)flfi Xi — ﬂd 'Ul- +) Z l]Xj , 1 € [m] (.)
' JeN;
Summing (6.10) over j € N;, we have that (6.10) gives
ok = ok g YLyt e m). (6.13)

JEN;
(6.12)—(6.13) can be written in a compact form:
2
X**! = argmin <f(X) n <Tk n /;LX", x> n ’; H VD(X — x")H) . (6.14)
X

B

vkl — yk
+ 2

LX ! (6.15)
Denoting W = /L/2, (6.15) can be rewritten as
YT — vk gW2xk+H!
Letting Y € Span(W?), we know that
Y* € Span(W?), Vk >0,

and there exists €% such that Y¥ = W 2 Then (6.14) and (6.15) can be rewritten

EIS3

Xk+! — argmin (f(X) n (sz", WX> +p <W2X", X> + g H VDX - X¥) Hz)
X

B

— argmin (f(X) n (sz", WX> + IWX|? + Dy (X, X")) . (6.16a)
X

Q< =@k 4 pWXKHT (6.16b)

2 Denote UAU to be the eigen-decomposition of W with U € R"* =1 and A € RO"—Dx(m=1)
then A is invertible. Since there exists R¥ such that Y* = UR¥, we can choose ¢ = UA~ le
such that TX = WQF.

3 From (6.15), we have R¥t! = R¥ 4+ BAZUTX**!. Multiplying both sides by UA™!, we
get (6.16b).

218 6 ADMM for Distributed Optimization
with
B 2 B
0 =7 |VOX| = T Iwx|,

Thus, algorithm (6.82)—(6.8d) is equivalent to using the linearized augmented
Lagrangian method to solve problem

min f(X), s.r. WX=0.

Algorithm (6.16a)—(6.16b) is not implementable in the distributed manner due to
W = /L/2, which is only used for analysis. In practice, we implement the original
(6.12)—(6.13) instead. We present algorithm (6.12)—(6.13) in Algorithm 6.7.

Algorithm 6.7 Decentralized ADMM of the ith node
Initialize: x? and v? =0,i € [m].
Send x? to its neighbors.

Wait until receiving x0 from all its neighbors, j € N;.
fork=0,1,2,--- do
Update x/ ! by (6.12).
Send Xf“ to its neighbors.
Wait until receiving X’;H from all its neighbors, j € N;.
Update uf“ by (6.13).
end for

6.2.1.1 Convergence Analysis

We consider the linearized augmented Lagrangian method (6.16a)—(6.16b) with a
general 1. From Theorem 3.14 or 3.8, we have the following convergence result.

Theorem 6.5 Assume that each f; is p-strongly convex and L-smooth, i € [m],
and Y (y) is convex and Ly, -smooth. Initialize Q' =o. Then for algorithm (6.16a)—
(6.16b) we have

1
zﬂ ”Szk-‘rl _ 9*”2 + g ||WXk+1 _ WX*HZ + Dw(x*’ Xk-‘rl)
1 -1
< |1+ | min pov , Mz,u
3 2(L+Ly) BIWI; Ly

1
x (12— o4 ?

28 5 IWXE — WX* |12 + Dy (X*, X")) :

where oy, is the smallest positive eigenvalue of L.

6.2 Decentralized Optimization 219

Proof From the proof of Theorem 3.8, to prove this theorem we only need to check
W@ — @9 = oL/212" — 7.

Note that B = W and 0% = % in Theorem 3.8.

Since the network has to be connected, the rank of the Laplacian matrix L is m —1
(Proposition A.2). Let VEV? = L be its economical SVD with V € R"*"=1 For
any €2 belonging to the column space of W, we have

d
Iwe? =3 efwe
i=1
d

=;Zsszsz,~

i=1

d

1

5 > Ve z (v e)
i=1

v

d

o1, oL, oL,

5 > IV =) Ivie|® = 5 I,
i=1

where we denote £; to be the ith column of £, and £ follows from the fact that
2 belongs to the column space of W, i.e., there exists & € Rm=Dxd guch that
Q = Vo.

From (6.16b) and the KKT condition, we know that both ¢ and 2* belong to
the column space of W. So we have

W@ — 2] > o/2I2° — @|.

From Theorem 3.8, we get the conclusion. m]

Now, we discuss algorithm (6.16a)—(6.16b) with the special

2
¥X) = g |vox|” - ’zuwxu2 and Ly = B,

where dmax = max{d;}. Then algorithm (6.16a)—(6.16b) reduces to Algorithm 6.7.
From Remark 3.4 and

1
W3 = 5 1L < D2 < dmax

(that is, ||B||% < dmax and 02 = GZL in Remark 3.4), we have the following theorem.

220 6 ADMM for Distributed Optimization

Theorem 6.6 Assume that each f; is p-strongly convex and L-smooth, i €

[m]. Initialize Q% = 0 and let B = (\/aLd) Then Algorithm 6.7 needs
Ldmax dmax 1
0 (<\/ wor T) log e) iterations to find an €-approximate solution (X,),
ie.,
1 *12 ﬁ *12 *
2ﬁllﬂ—s2 I+ 5 IWX = WXTI" 4+ Dy (X7, X) < €.

We see that the complexity depends on the condition number ﬁ of the objective

function and d(;"L“X. The latter one can be regarded as the condition number of the
Laplacian matrix L.

6.2.2 Linearized ADMM

The subproblem in (6.8a) is a proximal mapping of f; (c.f. (6.12)). When the
proximal mapping of f; is not easily computable, as in Sect.3.2 we may linearize
the objective f;, which leads to the following step [10]:
2
xf“ =argmin|:(Vf,(x), X; — X; > H
X

£ 2 (P z>+§MXz-—zzHZ>

Jjii.j)eé
k k B k|2
+ Z ((}’jivxi _Zj,'>+) X; _Zj,'H >i|
j:(j,heé
Steps (6.8b)—(6.8d) remain unchanged. Similar to (6.11), we have
. L 2
xf,“rl = arg}(l}lln [<Vf,-(xf?), X; — Xf‘> + 5 X~ xf.‘
k ,3 k k ﬁ k 2
+ Z (<X,~j+) (x,- —xj),x,->+) ‘X,’—XI-H)}

JEN;

1 P
=xk — L+ VA + Y [xﬁ.‘j + (Xf—x’;)}

JEN;

6.2 Decentralized Optimization 221

Similar to the deductions in Sect. 6.2.1, the resultant linearized ADMM can be
rewritten as

L
Xk = argmin((Vf(Xk),X>~|— X — XK
< 2
k 2wk ,8 k 2
+<sz ,WX>~|—ﬂ<W X ,X>+ 2 H\/D(X—X)H
—xk — (LI + gD)"! (ﬁWZXk +Vrxky + wsz") : (6.172)
Q! = @k 4 pWXkH! (6.17b)
which is also a special case of algorithm (6.16a)—(6.16b) with
v = ZIXIP — 700+ 5 Vx| = Diwxi and 2y = £+ B

We present the method in Algorithm 6.8, which is a distributed version of (6.17a)—
(6.17b).

Algorithm 6.8 Decentralized linearized ADMM of the ith node
Initialize: x? and v? =0,i € [m].
Send x? to its neighbors.

Wait until receiving x0 from all its neighbors, j € N;.
fork=0,1,2,--- do

Xf+1:argmin(<vﬁ(xf)vxi> <v X,> <Z L,] ¢ > ﬂdiz-i-L X

Xi JEN;

k

)

i i

JEN;

! p
k k k k
B L (Vﬁ(xi}ﬂi > Lijxj) |

Send xf'H to its neighbors.
Wait until receiving x’]‘Jrl from all its neighbors, j € N;.

k+1 v + ZJENL,/X
endfor

From Remark 3.4, we have the following theorem.

Theorem 6.7 Assume that each fi is pu-strongly convex and L-smooth, i €
[m]. Initialize ° = 0 and let B = O (\/ “L.) Then Algorithm 6.8 needs

OLdmax

222 6 ADMM for Distributed Optimization

) ((L + dmax) log i) iterations to find (X,) such that

® oL

1
12— e+ P

WX — WX*||2 + Dy (X5, X) <e.
26 2|| <+ Dy ()<e€

6.2.3 Accelerated Linearized ADMM

In this section, we accelerate algorithm (6.17a)—(6.17b) using Algorithm 3.6. The
resultant algorithm has the following iterations [8]:

Y = 0X* + (1 — 9)Xk, (6.18a)
1 0
Xk = . [MY" + X0 (Vf(Y") L WK 4 /39W2X"):| . (6.18b)
0
o
XF = oxX*t! 4 (1 — 9)XK, (6.18¢)
Q! = @F 4 gowWXH !, (6.18d)

and it is presented in Algorithm 6.9 in the distributed manner.

Algorithm 6.9 Accelerated decentralized linearized ADMM of the ith node

Initialize: x? = ?(? and v? =0,i € [m].

Send x? to its neighbors.

Wait until receiving x0 from all its neighbors, j € ;.
fork=0,1,2,--- do
yE=oxt + (1 - 0%

k+1)
xl.+ = glﬂt [uyf + 2xf — (Vfi(yf-‘)-i-uf-‘ + '32 Z./EM Lijxf;)].

T = oxtt 4 (1 - 0)FE.
Send Xf“ to its neighbors.
Wait until receiving X’;H from all its neighbors, j € N;.
k+1 _ k , pO k1
vt =vi 4+ e Lix T
end for

Denote

= (1-0) (f(f(") - fXH+ <9* Wik>)

+92 IXE x4 et — e
20 28 '

6.3 Asynchronous Distributed ADMM 223

Table 6.2 Complexity comparisons between decentralized ADMM, decentralized linearized
ADMM (LADMM), and its accelerated version

Decentralized ADMM Decentralized LADMM Accelerated decentralized LADMM

Ldmax dmax 1 L dmax 1 Ldmax 1
0((\/ Lo, + aL)logE) 0((u+ aL)logg) 0(\/ or 10g5>

From Theorem 3.15 (note that ||B||% < dpax and 02 = ‘72L in Theorem 3.15), we
have the following convergence result.

Theorem 6.8 Suppose that each f; is u-strongly convex and L-smooth, i € [m].
Assume that 2”(17‘]'1*"‘ < ,Ly where oy, is the smallest non-zero singular value of L. Let

1 L 2 pdmax
o= B = , and 0= .
dmax \/ Loy,

Then for algorithm (6.18a)—(6.18d) (Algorithm 6.9), we have

uoL
Gar<0(1- .
k+1 = (\/ZLdmax> k

We list the convergence rates comparisons in Table 6.2.

6.3 Asynchronous Distributed ADMM

Algorithms 6.1-6.2 proceed in a synchronous manner. That is, the master needs
to wait for all the workers to finish their updates before it can proceed. When the
workers have different delays, the master has to wait for the slowest worker before
the next iteration, i.e., the system proceeds at the pace of the slowest worker. In this
section, we introduce the asynchronous ADMM proposed in [4, 5] to reduce the
waiting time.

In the asynchronous ADMM, the master does not wait for all the workers, but
proceeds as long as it receives information from a partial set of workers instead. We
denote the partial set at iteration & as A*, and ﬂf as the complementary set of A,
which means the set of workers whose information does not arrive at iteration k. We
use o to lower bound the size of AX. In the asynchronous ADMM, we often require
that the master has to receive the updates from every worker at least once in every
7 iterations. That is, we do not allow some workers to be absent for a long time. So
we make the following bounded delay assumption.

Assumption 3 The maximum tolerable delay for all i and k is upper bounded.

224 6 ADMM for Distributed Optimization

Algorithm 6.10 Asynchronous ADMM of the master
Initialize: j]l == d:il =0.
fork=1,2,--- do

. . A ok i -
Wait until receiving xf.‘ and A; from workers i € AF such that |A¥| > o and df <t —1for

all j e AL
Xk+1 _)A({(, Vi € ﬂk,
LT X, Vie AR

1° c*

~k
M A vie A
! A Vi e AL

. k

“k+1 _)0, Vi € A",
di

_!&fH,Weﬂ’;.

m

k+1 . k1 k41 Bkt 2 P k2
z :arg;nm |:Z <<Xi » X; —z)+ 2”Xi —1z|)—!— 2||z—z Il :|

i=1

i=l1

m
:p —|—1mﬁ {pzk + Z (kf“ + ﬁxf+l):| .

Broadcast zFt! to the workers in A*.
end for

Denote the upper bound as t, then it must be that for every i,
i c ﬂk U ﬂk_l LU ﬂmax{k—r+l,0}‘

We describe the asynchronous ADMM in Algorithms 6.10-6.11. It has several
differences from the synchronous ADMM:

1. The master only updates (xf“, l;’.‘“) with i € A,

2. zis updated by solving a subproblem with an additional proximal term.

3. We introduce d;, the amount of delay, for each worker such that the bounded
delay assumption holds. The master must wait if there exists one worker with
d=1t-1.

4. The master only broadcasts the up-to-date z to the arrived workers in AX.

6.3.1 Convergence

To simplify the analysis, we rewrite the method from the master’s point of view:

. 2
k1 _ | argmin (fi(xi) +<Xfl+1,xi>+ . Hx,- — z"i“H) Vi € Ak,

i - X
xf.‘, Vi e ﬂf.
(6.19a)

6.3 Asynchronous Distributed ADMM 225

Algorithm 6.11 Asynchronous ADMM of the ith worker

1 A 20 .
Initialize: x? and A;,i € [m].
fork; =1,2,--- do
Wait until receiving z from the master.

ki . ~ki
xf'“ = argmin (f,-(x,-) +(xi VX — z>+ §||x,- —zllz)

X;
1 ok
:PI'OXﬁ—lfl_ (z— ,BAi)

~ki+1 ~ki ks
PNy +,3<xfl+‘—z).

1

ko] akitl
Send (Xf’“, X;') to the master.
end for

e xfgﬂ +B (Xf_chl _ Zkl-+1) Vi e Ak,
’ Ak Vi € AL

m
L argmin | 30 ({1, b Bl kst _ 1P\ L P k||?
Z&t _arginm H((xi » X; —z>~|—2‘xi _ZH>+2HZ_ZH ,

(6.19b)

(6.19¢)

where we denote k; as the last iteration before iteration k& for which workeri € Ak
arrives, i.e.,i € Aki . Thus, for all workersi € ﬂk, we have

kil _ k42
Xt o ok

Akt — x{.‘i+2 =...=2F and (6.20)

1

max{k — 7,0} < k; <k.

For each i € ﬂlg , we denote E as the last iteration before iteration k for which
worker i arrives, i.e.,i € Ak . Under the bounded delay assumption, we have

max{k — 7+ 1,0} <k < k.
Thus, for all workersi € ﬂlj , we have
X/fi-i-l _ X/fi+2 _

i i — i

ki+1 _ ki+2 _
AT =4

226 6 ADMM for Distributed Optimization

We also denote /25 as the last iteration before E, for which i € Ak arrives, 1.e.,
i € Ak We also have

max{E —1,0} < IE,- < E

Thus, for all workersi € ﬂlg , we have

x;’_‘+1 =X§i+1 = argmin (ﬁ (x;) + <xfi+1’ x,-> + ’; Hxi _ gkitl H2) ’ (6.21)
Xi
kffH =X§i+1 _ Xﬁ_@,~+1 4B (XI_EH _ Z12i+1) ’ (6.22)
x?"H = x§i+2 =...= xll?", and
G a2 gk (6.23)
Denote (x},--- , Xy, z*,A], .-+, Ay, to be a KKT point. We have

m
ijzo, zf=xf, and Vfi(x)+A =0, ie[m]
i=1

Also denote f* =", fi(z").

Theorem 6.9 Assume that each f; is convex and L-smooth, i € [m], and
Assumption 3 holds true. Let

14+ L2+ /(14 L??2 +8L2
>

1
B 5 and p > z[m(l—i-ﬁz)(r—l)z—mﬁ].
Suppose that (X’f,-n ,x’,;,zk,x’;,-.- ,)J,;) generated by (6.19a)—(6.19c) are
bounded, then (le, ,Xﬁi, 7~ klf, ,an) converge to the set of KKT points

of Problem (6.2) in the sense of

1

m
fo—m, Xt 50, and VAEETH A =0, ieml.
i=1

Proof Recall the augmented Lagrangian function in (6.3). Notice that
L(Xk+1, Zk+1, A‘k-‘rl) _ L(Xk, Zk,)"k)

_ (L(Xk+1’zk+1’xk+1) _ L(Xk+1’zk’xk+1)>

6.3 Asynchronous Distributed ADMM 227

+ (LOHL 2N - Lt 2)
+ (L(xk'H, &0 — L, 2K x")) .

We bound the three terms one by one.

For the first term, from the (m 8+ p)-strong convexity of L(x, z, L)+ g Hz —ZF H 2
with respect to z, (6.19¢), and (A.7), we have

LA Zk, ARty (L(Xk+1’ AT Ak 4 ﬂ2’||zk+1 _ zk||2)

2
=" -2

Therefore,

LM g1 Akl p Rt gk Ak < (mzﬂ ~I—P> sz+1 _ ZkH2_

For the second term, from the augmented Lagrangian function in (6.3), we have

L 26 AR Lkt 2 Ak

_ zm: T
i=1
Z (kf“ — Ak, x{f‘H - zk>
ieAk
_ (<xfg+1 — b gk Zk,-+1> + <x5g+1 _ Ak kit Zk>)
ieAk
b (1)ll;+1 ok 2 n (x’.‘“ _ak gkl _ Zk>)
ﬁ 1 1 1 17 I
ieAk

where we use A t! = A& for i € A¥ in £, and (6.19b) and (6.20) in L
For the third term, from the B-strong convexity of L(X, z, A) with respect to x;,
we have

L(Xk+1, Zk, xk) _ L(Xk, Zk, xk)

=y Kﬁ(xfgﬂ) +(X§’X;’§+l _Zk>+§

ieAk

el

228 6 ADMM for Distributed Optimization

(ﬁ(xf)—i-()»fvxﬁ'{ > ! HX —f H)}

B

2
< Z <Vﬁ(xfg+1) AR Bkt gk Xk xf> - Xkt gk)
ieAk
2
4 Z <,3 (zki+1 — 7, xﬁ.‘“ - xf> -, xk1 xf-‘) , (6.24)
ieAk

where we use xf.‘H = xf.‘ fori e ﬂf. in =, and the optimality condition of (6.19a)

and (6.20) in <.
Thus, we have

L(XkJrl, Zk+1, lk+1) _ L(Xk, Zk,).k)

(F e el
+> (

+ <xf.‘“ _ M’C’ it _ zk>
ieAk

—i—ﬁ(ki+1 k,Xﬁngl —Xf»-

From (6.192)—(6.19b) and (6.21)—(6.22), for any i, we have

)‘kJrl Xk

0= V£ 4 (6.25)
From the L-smoothness of f; and (a, b) < %||a||2 + 210([b]|? for & > 0, we have
I = Al < Ll =Xl

and

L(Xk+1, Zk+1, A.k+1) _ L(Xk, Zk,)"k)

= (Tl -4-S(3-5 -5)b

ieA

k+1 k
i X

T SRR e (620

ieAk

6.3 Asynchronous Distributed ADMM

Now, we bound the last term in (6.26). It is easy to show that

229

K 5 K k—1 2
Z Z sz,~+1 _ZkH _ Z Z Z (Zz _Zz+1>
k=0 je Ak k=0je Ak ||t=k;+1
K k—1 5
< Z Z (k—ki—1) Z zt—thH
k=0 je Ak t=ki+1
K k—1 5
SZZ(T_I) Z zt_zt+1H
k=0 ; c Ak t=max{k—t+1,1}
K k—1)
sme-nY Y |r-27
k=0 t=max{k—7+1,1}
<m(t—1) Z H 1 H (6.27)
due to
max{k — 7,0} <k; <k and |A*| <m.
Thus we have
LxK+L 2K+ 2K+ 1 x0, 20 29)
K
mp A+pHm@ =DV e g2
- Z +po)— z" —1z
2 2
k=0
L2 L2 1\ |4 2
+1 k
Z Z (T 2) X X
k=0 ;e Ak
Letting p and B be large enough such that
L> L* 1 1+ 2 —1)?
/3— — — >0 and mﬁ—i—p —(+'3)m(T) > 0,
2 B 2 2 2 2

from the assumption that (xX 1, zK+1 A&+1y s bounded, we have

2 75 50 and xf“ — xﬁ.‘ — 0, Vie Ak

230 6 ADMM for Distributed Optimization
From (6.25) and the smoothness of f;, we have
M Ak S0, viedAt

From (6.19b), we have

xf“ — kit 0, Vie ﬂk,
which further gives
Xf“ — Y S0, ViedA,
due to
max{k — 7,0} <k; <k and zNt' —Z1 0.

For any i € AX, we have i € AL and

R

< sz+1 _ Gki+l H + szi+1 _ Xi,-+1H

a1 Z1€i+1H n ; ‘)‘ZE _ x?ﬂ” o
where = uses (6.22) and (6.23). So we have
xf“ — 0, Vi

Then from the optimality condition of (6.19¢), we have

m

Zkf — 0.

i=1

6.3.2 Linear Convergence Rate

When we further assume that each f; is strongly convex, we have the linear
convergence rate.

6.3 Asynchronous Distributed ADMM

231

Theorem 6.10 Assume that each f; is ju-strongly convex and L-smooth, i € [m],

and Assumption 3 holds true. Let 8 and p be large enough such that

8m (B —u) < p,
2 1+8%2 1
mpE2p g (BT mt2% > 0, and
2 2 2m
L2 1?1 L? L?
p_Lo_ L 1 - 27l > 0.

2 B 2 2 4mp?r 4mp?

Then we have
(K+1)
L(xKH1 gK+1 3K+ g o (1 + 5) (L(xo, 2’10 — f*)s
0

p+mpB 1]

where § > max’l, 1,
p> mp

Proof From the strong convexity of f; and (6.25), we have

7
2

R A R N

From the optimality condition of (6.19c), we have
m
_ Z I:xif+1 n ’B(ngﬂ _ zk+1)] o — 4 =o0.
i=1

So we have

m

k+1 k+1 k+1y Jk+1 ®\ __ k+1 ko k+1 *
Z(ki +B8(x;" —z7),z —z>_,o(z -7,z —z>
i=1

and

iﬁ(z*) - i fixth
i=1 i=1
i<xk+1 k+1 k+1>_|_ M

i=1

2
7 — Xf_chl H

'ME &Fﬂﬁ

+ p<zk+1 gk gkt _ Z*> —B < k1 _ gkl gkl Z*>

i ’
i=1

232 6 ADMM for Distributed Optimization

Sl

i (xk+1 k+1> i:

i=1

p+mﬂ%ﬂt_* 2

2 pH
z

+

SHIEEE
i=

Thus we have

0
& — 7t A

2
X{;+1 _ Zk+1H _

L(XkJrl, Zk+1, xk+1) _ f*

By k+1 ,0 2
< 5 ZHXf —z* Hz —z*
i=1
tm 2 2
_p+mp sz+1 Y L sz+1 _zkH .

We want to eliminate the first three terms. Since

B—n Zm
- k+1 *
2 i=1

2 _(B- u;(l +8) i fo+1 _ zk+1H2

2
and

wzmmo+gﬁwﬂ_f

2
P sz _ g

2 1
S e R (R | e

we have
L(Xk+1, Zk+1, xk-i—l) _ f*

2

e o[e

2

Xfy+1 _ gkl H

b 2 2
sz+1 _ gk H ngﬂ _ gkl H

by letting § > 1 be large enough such that

p+mB—p) mu

<0.
268 2 =

6.3 Asynchronous Distributed ADMM 233
Since

2
k1 _ k1 H

2
-y (HXfH kil kit _Zk+1H)
ieAk

£y (H Kt _ ikl | it _zk+1H2>

le.ﬂ

52(2

ieAk

~ 2 A 2
s <2 foﬂ _Zki+1H +2HZk,~+1 _zk+1H)

ieAk

2 2
Xf“ _ zk,-+1H 12 sz,-+1 _ zk+1H)

=2 (,322 e A T H2>

ieA
N Z < i H)‘k i+l _ ki 2~|—2Hzl€iJrl —zk+1H2)
16_7{ ’3
£ (G e sl aT)
ek
Yy <2L2 H Ritl _ .iH2+4H11€I-+1 _ZkHZ) + 4m sz“ —z"‘z,
16_7{

b
where = uses (6.19b), (6.20), (6.22), and (6.23) and < uses (6.25) to replace Xf?

b
with —V f; (xf.‘) and then apply the L-smoothness of f;. < also uses the inequality
lla+bl*> < 2(la]l* + [b]|).
By letting p be large enough such that 8m (8 — u) < p, we have

L(XkJrl, Zk+1, A.k+1) _ f*
I

5
< ["2 +4m(p — u)é} HZ"“ —zt

. Z(ﬂ s (ﬁL; HX;(H _X{'(H2 44 sz,-+1 — ZkH2>

ieAk

234 6 ADMM for Distributed Optimization

207 7 72 . 2
4 el)

i

2 2
L] sz,-+1 _ gk H)

i i

e R o

ieA

S (2L = =12 . 2
T el el MR PR)
k

ﬁ2

ieA,

Dividing both sides of the above inequality by pd and adding it with (6.26), we have

(L(x"“,z"“,xk“) — f*) — 717 (L(Xk,zk, 2Ky — f*)

1 L> | % &P L A
<o | Z e I A 2, -4
4 2) !) 2
7 ieAk mp ieAk "
mp + p)H k+1 kH2 <1+I32 1) ki1 _ k|
— 1)z —z"| + Z + Hz’ -z H
2 et 2 2m
Z(RS N) K
B 2 2 4mp? H
ieAk mp
1 L? FHl_ E L A
= | 2 e I 2, [
ieAk ieAk
mp + p)H k+1 kH2 <1+I32 1) ki1 _ k|
— 1)z —z"| + Z + Hz’ -z H
(2 =\ 2 Tom

k+1 X;’_c

i g LT L? 1 L? 2
— 2 B 2 2 4mp? '
k1 — xﬂ‘ forall i € A in the last line.

where we denote n = 1 + pl(S and use x;
Telescoping the above inequality from k£ = 0 to K, we have

K1+1 (L(Xo’zo’xo) _ f*)

(L(XK+1’ 2K+ AK+) f*) _

~ 12
k 1 :
+ Xi'H

zeﬂk

6.3 Asynchronous Distributed ADMM

2
2mZ K+1- kZHkH ZH

zefﬂk

K
mB + p) 1 H ka1 kHZ
— —1 b4 -z

+<1+ﬂ 21")2 K+1kZHk+1 ZH

ieAk

g L*> L?)
_<2 B 2 2 4mp?

k+1

|

2

235

We want to choose B and p large enough such that the right hand side is negative.

Similar to (6.27), we have

K 2
Z Z nk sz,~+1 _ zkH
k=0 ;e Ak
2

K k—1)
ZZ (k—ki—1)n* Y z’—zf“H
k=0 jeA* t=k;i+1
K k—1

=SB IR UMD DI EE
k=0 ;j Ak t=max{k—t+1,1}

k—1

K
<m@E-1Y o

k=0 t=max{k—7+1,1}

K
2
<m(t —1) Z (nk+1 TR T nkJrrfl) sz _ gkl H

k=0

L Wi PRl

t t+1H2

> -

236 6 ADMM for Distributed Optimization

Analogously, we have

Z S H fit1 kH2

k=0 ;e Ak
sm@e-n" Zn [-2,
due to
max{k—r~|—1,0}§E <k, max{E — 1,0} 5/2,- <E~,
and thus

max{k — 2t + 1,0} < k; < k.

We also have

>

k=0 jeAk
712
k—Fk; k k +1 ki
SN i =]
k=0 j e Ak
712
<yl Z Z ‘ i+l _ ic
k=0 j e Ak
I X+ 2
=n (- 1) n* il
k=0 i=1
k+1 kl- 2
where in < we use the fact that each n | appears no more than t — 1
z =12
times in the summation Y 3", Ak nki H kit xf’

Thus, we have
1
2 N e S (L2009 -)

1 2t
< |mBre b ey T
2 2m n—1

6.3 Asynchronous Distributed ADMM 237

K
1+ 1 nt—n 1 kP
_< 2 +2m>m(t_l)77—l kz_;)nK‘H—k Hz —r H

2 2 2 2
_[g L2 > 1 L L Tl(r—l)}

2 2 amp? 4mp?”

k1 ok?

X; i

5 _
m K 1
x>0 pK+1-k ‘

i=1 k=0

K))
K+l ok
x Z K+1—k HZ —z H
=0

g L> L* 1 L? L>
(T - - pAE
2 B 2 2 4mB? 4mp?
m K 1
x Z Z pK+1-k ‘

i=1 k=0

2

X

k+1 k
X; A

S 07
where we use

n<2 " l=np+--4n'<24...42771 <27 and

T o2t
=1 ==

0
From Theorem 6.2, we see that the synchronous ADMM needs O <\/ ,lL,L log i)

iterations to find an e-optimal solution, which has the optimal dependence on i
For the asynchronous ADMM, Theorem 6.10 only proves the linear convergence
without a complexity explicitly dependent on ©. We believe that in general the
asynchronous ADMM needs more iterations than synchronous ADMM. It is unclear
whether the time saved per iteration of the asynchronous ADMM can offset the cost
of more iterations in theory, although it shows great advantages in practice.

There are some other ways to analyze asynchronous ADMM. For example,
[6, 7, 13, 15] studied randomized asynchronous ADMM, which requires more
assumptions than Algorithms 6.10-6.11 do, and it is also unclear whether it needs
less running time than the synchronous ADMM in theory.

238 6 ADMM for Distributed Optimization
6.4 Nonconvex Distributed ADMM

Next, we introduce the nonconvex distributed ADMM. In fact, the asynchronous
ADMM (Algorithm 6.11) can also be used to solve nonconvex problems. In this
case, L(x,z, 1) is (8 — L)-strongly convex with respect to x, and (6.24) should be
replaced by the following one:

LM 25 k) — Lxk, 25,00

—L
=3 (IB(zki—H gk xH —xf>— B , ‘

1 _ gk

Xl 1

y

Theorem 6.11 Assume that each f; is L-smooth, i € [m], and Assumption 3 holds
true. Let

ieAk

Accordingly, we have the following convergence guarantee [4].

1+ L+L2+/(1+L+L>»2+8L? m(l + B (x — 1) —mB
B> and p > .

2 2
Suppose that (X’f, ,X’n‘1,zk, X’f, ,XZ) generated by (6.19a)—(6.19c) are
bounded, then (X’f, cee ,X’,‘n, z~, klf, cee Xﬁi) converge to the set of KKT points

of Problem (6.2) in the sense of

1

m
fo—w, Xt 2 50, and VHEETH AT =0, e m].
i=1

The synchronous ADMM is a special case of the asynchronous ADMM with
.?{’Lf = @ and k; + 1 = k. Thus, the above theorem also holds for the synchronous
ADMM with a much simpler proof.

6.5 ADMM with Generally Linear Constraints

We end this chapter by non-consensus-based distributed ADMM. Namely, the
problem is the generally linearly constrained one (3.71). The linearized ADMM
with parallel splitting [9, 11] given in Algorithm 3.11 can be used to solve the
problem directly. We present it in Algorithms 6.12—6.13 in the distributed manner.
If the proximal mapping of f; is not easily computable, we may linearize f; as well,
but since this is a straightforward modification over Algorithms 6.12—-6.13, we omit
the details.

References 239

Algorithm 6.12 Distributed linearized ADMM with parallel splitting for the master

fork=0,1,2,--- do

Wait until receiving y’f+1

1
shtl = i Y{'(H-
AMFL =8 4 B (s —b).
Send s¥*1 and A¥t! to all the workers.

from all the workers i € [m].

end for

Algorithm 6.13 Distributed linearized ADMM with parallel splitting for the ith
worker

Initialize: x? and A?, i €[m].

0 _ A.x0
P = Aix;.

Send y? to the master.

Wait until receiving s° and A° from the master.
fork=0,1,2,--- do

xf“ = arg;nin (f;(x,-) + (kk, A,-x;) + ﬂ<AiT (sk — b) VX — Xf)
)
= Prox(mﬁuA,-n%)’lf,- (x{‘ - m,BIIlA,- ||%AI.T [)J‘ + B (sk - b)}) .

k+1 k+1
yi+ = A,-xi+ .
k+1
Send y; " to the master.
Wait until receiving s¥*! and A¥*! from the master.

mpBA; I3
2

xK

i A

end for

References

1.

2.

3.

N.S. Aybat, Z. Wang, T. Lin, S. Ma, Distributed linearized alternating direction mehod of
multipliers. IEEE Trans. Automat. Contr. 63(1), 5-20 (2018)

D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods
(Prentice Hall, Hoboken, 1989)

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),
1-122 (2011)

. T.-H. Chang, M. Hong, X. Wang, Asynchronous distributed ADMM for large-scale opti-

mization — part I: algorithm and convergence analysis. IEEE Trans. Signal Process. 64(12),
3118-3130 (2016)

. T.-H. Chang, W.-C. Liao, M. Hong, X. Wang, Asynchronous distributed ADMM for large-

scale optimization — part II: linear convergence analysis and numerical performance. IEEE
Trans. Signal Process. 64(12), 3131-3144 (2016)

. F. Tutzeler, P. Bianchi, P. Ciblat, W. Hachem, Asynchronous distributed optimization using a

randomized alternating direction method of multipliers, in IEEE Conference on Decision and
Control (2013), pp. 3671-3676

240 6 ADMM for Distributed Optimization

7. S. Kumar, R. Jain, K. Rajawat, Asynchronous optimization over heterogeneous networks via
consensus ADMM. IEEE Trans. Signal Inf. Process. Netw. 3(1), 114-129 (2017)

8. H. Li, Z. Lin, Y. Fang, Variance reduced EXTRA and DIGing and their optimal acceleration
for strongly convex decentralized optimization (2020). Arxiv:2009.04373

9.Z. Lin, R. Liu, H. Li, Linearized alternating direction method with parallel splitting and
adaptive penalty for separable convex programs in machine learning. Mach. Learn. 99(2), 287—
325 (2015)

10. Q. Ling, W. Shi, G. Wu, A. Ribeiro, DLM: Decentralized linearized alternating direction
method of multipliers. IEEE Trans. Signal Process. 63(15), 4051-4064 (2015)

11. R. Liu, Z. Lin, Z. Su, Linearized alternating direction method with parallel splitting and
adaptive penalty for separable convex programs in machine learning, in Asian Conference on
Machine Learning (2013), pp. 116-132

12. M. Maros, J. Jalden, On the Q-linear convergence of distributed generalized ADMM under
non-strongly convex function components. IEEE Trans. Signal Inf. Process. Netw. 5(3), 442—
453 (2019)

13. Z. Peng, Y. Xu, M. Yan, W. Yin, ARock: an algorithmic framework for asynchronous parallel
coordinate updates. STAM J. Sci. Comput. 38(5), 2851-2879 (2016)

14. W. Shi, Q. Ling, K. Yuan, G. Wu, W. Yin, On the linear convergence of the ADMM in
decentralized consensus optimization. IEEE Trans. Signal Process. 62(7), 1750-1761 (2014)

15. E. Wei, A. Ozdaglar, On the O(1/k) convergence of asynchronous distributed alternating
direction method of multipliers, in IEEE Global Conference on Signal and Information
Processing (2013), pp. 551-554

Chapter 7)
Practical Issues and Conclusions Check for

In the previous chapters, we have introduced the major steps of various ADMMs and
their convergence and convergence rate analysis. However, those are the theoretical
aspects of algorithms. In real implementations, some practical issues need to be
considered. In this chapter we first briefly discuss the practical issues and then give
conclusions.

7.1 Practical Issues

In this section, we discuss several implementation issues of ADMM in practice.
Since we are unable to discuss all variants, we focus on the model problem (2.13)
and the original ADMM (Algorithm 2.1), where A € R?*" and B € R7*"™.

7.1.1 Stopping Criterion

When solving Problem (2.13), our purpose is to find (x*, y*) satisfying the following
KKT conditions:

—AT e dfx*), —BTA* €dg(y"), and Ax*+By*=b, (7.1)

where A* is the optimal dual variable. On the other hand, when we use ADMM to
solve Problem (2.13), the optimality conditions of the subproblems (2.15a)-(2.15b)
are

_ATxk+1 _ ,BATB(yk _ yk+1) — —ATA,k _ ﬁAT(AXk+1 4 Byk _ b)
€ of (),
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 241

Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9840-8_7&domain=pdf
https://doi.org/10.1007/978-981-16-9840-8_7

242 7 Practical Issues and Conclusions

€ dg(y*™).

Define the primal residual and the dual residual as
pk+l — Axk+l + Byk-‘rl —b and dk-‘rl — ﬂATB(yk _ yk-‘rl)’ (7.2)

respectively. We see that if p*+! = 0 and d**! = 0, then (x¥*+1, y**1, ¥+ satisfies
the KKT conditions in (7.1). Thus, the convergence can be monitored by p**! and
d“*!, and we can use

k+1 k+1
Ip" 'l <€, and [d'| <eu

as the stopping criterion. Boyd et al. [1] suggested using a combination of absolute
ErTor €,4ps and relative error € to prescribe the tolerances €, and €4:

€p = /q€avs + €t max{|AXC||, | BYX [, [IbI]},
€4 = \/neabs + 6rel”AT)wk”-

This is a relatively good strategy so that the tolerances are applicable for a wide
range of problems with different dimensions and magnitudes.

For variants of ADMM, the stopping criterion can also be deduced by discerning
the discrepancy between the KKT conditions and the optimality conditions of the
subproblems for updating the primal variables, e.g., [7] for linearized ADMM.

7.1.2 Choice of Penalty Parameters

Throughout the book, a constant penalty parameter 8 has been used. In this case,
for many of the ADMMs introduced in the book a scaled form of the Lagrange
multiplier can be used. Namely, use A = 8~ ' instead. For example, we can rewrite
(2.15a)—(2.15c¢) as

. ~k
X! = argmin (f(x) + gy + g |AX +By* — b + A ||2> ;
X

B

y“4=a@mm<ﬂﬁ+5+g@%+2
Yy

~k
|M¢“+By—b+xw),

P23 4 AxE 4 By — b,

7.1 Practical Issues 243

Note that in the update (2.15c) of A, the coefficient S can also be chosen as other
values. For example, Theorem 5.1 of [3] shows that for Algorithm 2.1 the update
(2.15c¢) can be changed to

where 7 can be any fixed value in (0, (\/ 5+1)/2). Glowinski actually asked whether
the upper bound of t can be 2 [3] and Tao and Yuan gave an affirmative answer when
the objective is quadratic [10]. So in real implementations, it is worthwhile to tune
T as well.

Actually, the choice of 8 greatly affects the convergence speed, although may not
change the order of convergence. When g is fixed it is difficult to find the fixed value
that fits for various problems. So in reality it is more desirable to make 8 vary along
iteration. Typically, there are three modes of change: B; being non-decreasing, non-
increasing, and oscillating. When S is non-decreasing, normally it has to be upper
bounded' [8]. When g is non-increasing, normally it has to be lower bounded away
from 0, i.e., Bx > PBmin > 0 [4]. In either case, all the variants of ADMM still
converge because 8 will eventually be fixed at the upper bound or the lower bound
(i.e., the change of 8 only speeds up the initial steps of iterations when the tolerances
€p and €4 are not too small, which suffices for many real applications).

The change of B8 can be non-adaptive or adaptive. For example, Tian and Yuan
[11] proposed a dynamic but non-adaptive strategy to update 8:

Bk
\/1+L;1;§k

Br = 3{@ with By1 =

v

(7.3)

to improve the convergence of Algorithm 2.1 from O (k') to O (k=2) in an ergodic
sense, without the strong convexity assumption on f and g, where | x| is the largest
integer not exceeding x, y > 1, being a real number, is the frequency of adjusting
the penalty parameter, and Ly is the Lipschitz constant of Vg. Note that (7.3) means
that B decreases after roughly every y iterations.

While a non-adaptive change of 8 may help speedup, it is natural to think that
adaptive change of § may work even better. A straightforward idea is to balance the
primal and the dual residuals. Since

pk-‘rl — ‘Bk—l(xk-i-l _ A.k)
and if ADMM converges A typically has to be bounded, we may expect that a

larger B yields a smaller primal residual but a larger dual residual (see the definition
of d**! in (7.2)). Conversely, a smaller 8 leads to a larger primal residual and a

1 Under some circumstances, the upper boundedness condition can be removed, e.g., when 3f and
dg are uniformly bounded, which can be satisfied when f and g are norms [8].

244 7 Practical Issues and Conclusions

smaller dual residual. So we can adaptively tune S to balance the two residuals,
that is, increase when the primal residual is larger, and decrease 8 when the dual
residual is larger. A simple scheme for achieving this goal is (for example, see [1, 5])

nBe, if IIp*ll > vt
Br+1 =1 Bi/m, if 15| > v]p¥]l,
Bk, otherwise,

with n > 1 and v > 1. However, it is more challenging to prove the convergence of
ADMM under the above adaptive penalty scheme since Sy is oscillating.> Moreover,
the above scheme requires two parameters n and v. So it is less convenient to tune
their values. To address these issues, Lin et al. [7, 8] proposed another adaptive
penalty scheme that only allows to increase when the dual residual is less than
its tolerance. The scheme in [7, 8] was originally for linearized ADMM. When it is
adapted to the original ADMM, it becomes

| min{pBr, Bmax}. if 1A¥]| < €q,
Bi+1 =)
Bk otherwise,

where p > 1 and Bmax > 0 is the upper bound. As B is non-decreasing, the
convergence is guaranteed and only one parameter p needs to be tuned, which
greatly facilitates real applications. A good choice of p should make B increase
after every several iterations, rather than being stagnant for many iterations. The
corresponding scheme for decreasing 8, i.e.,

[max{p~' B, Bmin}, if IP¥Il < €,
Br+1 = .
Bk otherwise,

also works well, where Bnin > 0 is the lower bound.

7.1.3 Avoiding Excessive Auxiliary Variables

ADMM works in the principle of “divide and conquer” so that the updates for each
primal variable are relatively simple. As shown in Sect. 1.1, introducing auxiliary
variables is often necessary for obtaining relatively simple subproblems. However,
introducing more auxiliary variables brings the side effect of slowing down the
convergence (e.g., evidenced by the choice of L; in Sect. 3.5.3, which is proportional
to the number of blocks of variables). Therefore, if possible we should reduce the
number of auxiliary variables. Take Problem (1.6) for example, introducing the

2 For example, [5] requires 7 to be varying along iteration and Yol — 1) < co. So By only
changes very slightly when £ is large, making virtually no effect on balancing the residuals.

7.1 Practical Issues 245

auxiliary variable Y is necessary because otherwise the subproblem for updating
X:

XK1 = argmin <||X||* + (xk, b — Pao(X) — ek> + ’2 b —Pa(X) — ek||2>
X>0

is not easily solvable, even after linearizing the augmented term, due to the non-
negativity constraint X > 0. However, if || X |, is replaced by [X||? then introducing
Y is unnecessary because in this case the subproblem for updating X:

X+ = argmin (nxu2 (b= Pa0)) 4 £ b — Pox) - ek||2)
X>0 2

is easily solvable. So is the case when || X]||, is replaced by || X]|;.

7.1.4 Solving Subproblems Inexactly

In the previous chapters, we have assumed that the subproblems for updating the
primal variables are all easily solvable. For example, the proximal mappings of
f and g have closed-form solutions, or f and g are L-smooth functions so that
they can be linearized. If neither conditions can be met, we may have to solve
the subproblems iteratively. Since we can only run the iterations for solving the
subproblems in finite time and obtain approximate solutions, there is an issue of
when to terminate the iterations. There have been some results showing that for
several ADMMs (e.g., [2, 6,9, 12]), as long as the errors in solving the subproblems
are well controlled, e.g.,

o
T e < oo,
k=0

where € is the error (absolute error or relative error, whose exact definition may
vary with different algorithms of solving the subproblems) in the k-th iteration, the
resulting ADMMs can still converge to the solution of the original problem. This
indicates that the subproblems need not be solved at high precision at the beginning,
thus can save some time.

7.1.5 Other Considerations

There are other issues in real implementations, such as the initialization and the
order of updating the primal variables. However, in reality they do not affect the

246 7 Practical Issues and Conclusions

convergence speed very much. So we need not discuss them in detail. Nonetheless,
initializing with a good guess on the solution, if some prior information is avail-
able, definitely helps. Moreover, some convergence guarantees impose asymmetric
conditions on x and y, e.g., the full row rankness of B and different convexity or
smoothness conditions on g (e.g., see some theorems in Chap. 3). In this case, we
should pay attention to which primal variable is x and which is y in order to meet
the conditions.

7.2 Conclusions

In this book, we have introduced many variants of ADMM for various scenarios:
deterministic and convex optimization, deterministic and nonconvex optimization,
stochastic optimization, and distributed optimization. There has been abundant
literature on ADMM, studying various aspects of ADMM. Regretfully, what we
have introduced here is only the tip of an iceberg, as we organize the materials in
the types of problems to solve, want to present details of proofs, and also attach
practical values to the chosen algorithms.

ADMM works beautifully in the philosophy of “divide and conquer.” It is easily
implementable for solving real problems if one masters the trick of introducing
the auxiliary variables to decouple the target problem, the augmented Lagrangian
function, and the linearization technique. However, ADMM can be very slow if the
penalty parameter is not chosen appropriately. For some particular problems, such
as the linear program, ADMM can be extremely slow, despite its linear convergence
in theory (see, e.g., Theorem 3.5 and Lemma A.3). So ADMM is a good choice if
high precision is not required. This is one of the major reasons for its popularity in
the machine learning community nowadays.

References

1. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),
1-122 (2011)

2. J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Math. Program. 55(1), 293-318 (1992)

3. R. Glowinski, Numerical Methods for Nonlinear Variational Problems (Springer, Berlin, 1984)

4. B. He, H. Yang, Some convergence properties of a method of multipliers for linearly
constrained monotone variational inequalities. Oper. Res. Lett. 23(3-5), 151-161 (1998)

5. B. He, H. Yang, S. Wang, Alternating direction method with self-adaptive penalty parameters
for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337-356 (2000)

6. B. He, L.-Z. Liao, D. Han, H. Yang, A new inexact alternating directions method for monotone
variational inequalities. Math. Program. 92(1), 103-118 (2002)

References 247

7.

10.

11.

12.

Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive penalty for low-
rank representation, in Advances in Neural Information Processing Systems (2011), pp. 612—
620

.Z. Lin, R. Liu, H. Li, Linearized alternating direction method with parallel splitting and

adaptive penalty for separable convex programs in machine learning. Mach. Learn. 99(2), 287—
325 (2015)

. M.K. Ng, F. Wang, X. Yuan, Inexact alternating direction methods for image recovery. SIAM

J. Sci. Comput. 33(4), 1643-1668 (2011)

M. Tao, X. Yuan, On Glowinski’s open question on the alternating direction method of
multipliers. J. Optim. Theory Appl. 179(1), 163-196 (2018)

W. Tian, X. Yuan, An alternating direction method of multipliers with a worst-case O (1/n?%)
convergence rate. Math. Comput. 88(318), 1685-1713 (2019)

W. Yao, Approximate Versions of the Alternating Direction Method of Multipliers. Ph.D.
Thesis. The State University of New Jersey (2016)

Appendix A
Mathematical Preliminaries

In this appendix, we list the conventions of notations and some basic definitions and
facts that are used in the book.

A.1 Notations

Notations Meanings

Normal font, e.g., s A scalar.

Bold lowercase, e.g., v A vector.

Bold capital, e.g., M A matrix.

Calligraphic capital, e.g., T~ A subspace, an operator, or a set.

R, Z* Set of real numbers, set of non-negative integers.

[n] {1,2,--- ,n}.

EX Expectation of random variable (or random vector) X.

0,1 The identity matrix, all-zero matrix or vector, and all-one

vector.

x>y X — Yy is a non-negative vector.

X>Y X — Y is a positive semidefinite matrix.

F(N) = 0(g(N)) Ja > 0, such that f (%) <aforall N € Z*.

F(N) = O(g(N)) Ja > 0, such that f (%) <aforall N € ZT, where f(N) is
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 249

Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,
https://doi.org/10.1007/978-981-16-9840-8

https://doi.org/10.1007/978-981-16-9840-8

250

Notations

FWN) =Q(EWN)
FN) =0(g(N)
VX

Vi f(x)

x7

Diag(x)

|X]
Span(X)
()

lIxlim

12

- Il
- llo
-1
conv(X)
af

f*
f*x)

Proxer(-)

Dy (y, x)

A Mathematical Preliminaries

Meanings
the function ignoring poly-logarithmic factors in f(N).
3a > 0, such that 7N > a forall N € Z+.

g(N)
3b > a > 0, such thata < éf((ll\\,,)) <bforall N € Z*.
Gradient of f at x.
of
ax; °

Transpose of matrix X.

Diagonal matrix whose diagonal entries are entries of
vector X.

Cardinality of X.

The subspace spanned by the columns of X.

Inner product. For vectors, (X,y) = xTy;

for matrices, (A, B) = tr(ATB).

VxTMx, where M > 0.

Spectral norm of a matrix.

£> norm of a vector or the Frobenius norm of a matrix,

vl = /S V2 XD = /5 X

Nuclear norm of a matrix, the sum of singular values.
£¢ pseudo-norm, number of nonzero entries.

&y norm, [Ix[ly = 3=, Ixil, XN =32 5 Xl
Convex hull of set X.

Subgradient (resp. supergradient) of a convex (resp.
concave) function f, or the limiting subdifferential
of a proper and lower semicontinuous function.
Optimum value of f(x), where x varies in dom f
and the constraints.

The conjugate function of f(x).

Proximal mapping w.r.t. f and parameter o,

Proxy, (y) = argminy (af (0 + 3 Ix = yI1).

Bregman distance between y and x w.r.t. convex ¢,

Dy(y, x) = ¢(y) — ¢ (%) — (Vo (x),y — X).

A.2 Algebra and Probability

Proposition A.1 (Cauchy-Schwartz Inequality) For any x,y € R", we have

(x,y) =< IIxIllyll-

A Mathematical Preliminaries 251

Lemma A.1 ForanyX,y, z, and w € R", we have the following three identities:

_1 2 2 2
oy =, (1% + IyI? = Ix = yI?) (A1)
_1 2 2 2
ox. ¥y =, (Ix+ 12 = IxI” = 1y1%) (A2)
1 2 2 2 2
x—zy-w = (Ix=wi’ —lz=wI> = Ix =y’ +lz—¥I?). (A3)

Definition A.1 (Singular Value Decomposition (SVD)) Suppose that A € R™*"
with rankA = r. Then A can be factorized as

A=UxVT,
where U € R™*" gatisfies UTU = I, V € R** satisfies VIV = I, and
¥ = Diag(oy, -+ ,0r) with 01 > 02 > --- >0, > 0.

The above factorization is called the economical singular value decomposition
(SVD) of A. The columns of U are called left singular vectors of A, the columns of
V are right singular vectors, and the numbers o; are the singular values.

Definition A.2 (Laplacian Matrix of a Graph) Denote a graph as g = {7V, &},
where V and & are the node and the edge sets, respectively. e¢;; = (i, j) € &
indicates that nodes i and j are connected. Define V; = {j € V|, j) € &} to
be the neighborhood of node i, i.e., the index set of the nodes that are connected to
node i. The Laplacian matrix L of the graph g = {V, &} is defined as

Lij =1 -1 ifi#jand(,j) €&,
0, otherwise.

Proposition A.2 (Properties of Laplacian Matrix) A Laplacian matrix L of a
graph with n nodes has the following properties:

1. L>0.
2. rank(L) = n — ¢, where c is the number of connected components in the graph,
and the eigenvector associated to 0 is 1,,.

Proposition A.3 Given random vector &, we have

E|& — EE|? < E[&].

252 A Mathematical Preliminaries

Proposition A.4 (Jensen’s Inequality: Continuous Case) If f : C CR" — Ris
convex and & is a random vector over C, then

FEE) <Ef().

A.3 Convex Analysis

The descriptions for the basic concepts of convex sets and convex functions can be
found in [1]. We only consider convex analysis on n dimensional Euclidean spaces.

Definition A.3 (Convex Set) A set C C R" is called convex if for all x,y € C and
o € [0, 1] we have ax + (1 —)y € C.

Definition A.4 (Convex Function) A function f : C € R" — R is called convex
if C is a convex set and for all X,y € C and « € [0, 1] we have

flex+ A —a)y) <af(x)+ 0 —a)fy).

C is called the domain of f.

Definition A.5 (Concave Function) A function f : C € R" — R is called
concave if — f is convex.

Definition A.6 (Strictly Convex Function) A function f : C € R” — Ris called
strictly convex if C is a convex set and forallx #y € C and @ € (0, 1) we have

flax+ (1 —a)y) <af(x) + A —-a)f(y).

Definition A.7 (Strongly Convex Function and Generally Convex Function) A
function f : C € R" — R is called strongly convex if C is a convex set and there
exists a constant & > 0 such that for all x,y € C and « € [0, 1] we have

ua(l —a)
flax+ (1 —a)y) =afx) + 1A -a)f(y) -) ly —x|I>.
wu is called the strong convexity modulus of f. For brevity, a strongly convex
function with a strong convexity modulus u is called a u-strongly convex function.
If a convex function is not strongly convex, we also call it a generally convex
function.

Proposition A.5 (Jensen’s Inequality: Discrete Case) If f : C € R" — R is
m

convex,x; € C,a; > 0,i € [m], and Y_ o; = 1, then
i=1

f (Z%Xz’) <Y eif(xi).
i=1

i=1

A Mathematical Preliminaries 253

Definition A.8 (Smooth Function) A function is (informally) called smooth if it
is continuously differentiable.

Definition A.9 (Function with Lipschitz Continuous Gradients) A differen-
tiable function f : C € R" — Riis called to have Lipschitz continuous gradients if
there exists L > 0 such that

IVFfx) =VfWI = Llly—x|, Vvx,yeC.

For simplicity, if the constant L is explicitly specified we also call such a function
an L-smooth function.

Proposition A.6 ([3]) If f : C € R" — R is L-smooth, then

L
f@) =& = (Vi@ y=x)[= lly - x|, ¥x,yeC. (A.4)

If f is both L-smooth and convex, then

1
SOz O+ V. y=x+ VS - VI (A.5)

Definition A.10 (Subgradient of a Convex Function) A vector g is called a
subgradient of a convex function f : C CR"” - Ratx € C if

f > fx)+{(gy—x),VyeC.

The set of subgradients at x is denoted as 9f (x).

Proposition A.7 For convex function f : C C R" — R, its subgradient exists at
every interior point of C. It is differentiable at X iff (aka if and only if) 3f (X) is a
singleton.

Proposition A.8 If f : R" — R is u-strongly convex, then
FWM=fx+Egy—x) + glly —x|?, VgeafX. (A.6)
In particular, if f is pu-strongly convex and X* = argmin, f(X), then
Fo = £y = Dix— x| %)

On the other hand, if f is differentiable and (i-strongly convex, we can have

1
FxN > f(x) - ZMIIVf(X)IIZ-

254 A Mathematical Preliminaries

We can further have
(V) =V, x—y) = plx—yl* (A.8)

In particular,
IVFX) = VDI = nlix =yl (A9)

Definition A.11 (Epigraph) The epigraph of f : C € R" — R is defined as

epi f ={(x,)|xeC,t > f(x)}.
Definition A.12 (Closed Function) Ifepi f is aclosed set, then f is called a closed
function.

Definition A.13 (Monotone Operator and Monotone Function) A set-valued
mapping f : C € R” — 2% (also denoted as f : C € R" = R” for brevity)
is called a monotone operator if

(x—y,u—v)>0, Vx,yeCanduce f(x),ve f(y).
In particular, if f is single-valued and

x—y, fx)—f(¥) =0, Vx,yeC,

then it is called a monotone function.
Definition A.14 (Maximal Monotone Operator) Define the graph of an operator
T as

Graph(7) = {(x,u)|x € C,u € T(x)}.

For a monotone operator 7, if it has the property: for any monotone operator 77,
Graph(7) < Graph(7”) implies 7 = 77, then it is called a maximal monotone
operator.

Proposition A.9 If 7 is a maximal monotone operator, then its resolvent (I +7) ™!
is single-valued.

Proposition A.10 (Monotonicity of Subgradient) If f : C € R" — R is convex,
then df (X) is a monotone operator. If f is further p-strongly convex, then

(X| —X2,81 — &) > plxi — x|, Vx; € Candgi € f(x;),i =1,2.

If f is closed and convex, then df (X) is a maximal monotone operator.

A Mathematical Preliminaries 255

Definition A.15 (Bregman Distance) Given a differentiable convex function ¢,
the associated Bregman distance is defined as

Dy (y,x) = ¢(y) — ¢ (x) — (Vo(x),y —Xx).

If ¢ is convex but not differentiable, then the associated Bregman distance is defined
as

Dy(y.x) =¢(y) —¢(x) — (v.y — x),

where v is a particular subgradient in ¢ (x).

The squared Euclidean distance is obtained when ¢ (x) = é |2, in which case
Dy(y, %) = 5 lIx = ylI*.
Lemma A.2 The Bregman distance Dy has the following properties:
1. When ¢ is j-strongly convex, Dg(y, X) > ’ZL ly — x||2.
2. (Vo(u) = Vo(v),w —u) = Dy(w,v) — Dy(w,u) — Dy(u, V), for any u, v,
and w.

Definition A.16 (Conjugate Function) Given f : C € R" — R, its conjugate
function is defined as

f*(w) = sup ({z,u) — f(2)).

zeC

The domain of f* is
dom f* = {u| f*(u) < +o0}.

Proposition A.11 (Properties of Conjugate Function) Given f : C C R" — R,
its conjugate function f* has the following properties:

1. f*is always a convex function.

2. f**x) < f(x), Vxe C.

3. If f is a closed and convex function, then f**(x) = f(x), Vx € C.

4. If f is L-smooth, then f* is L™ '-strongly convex on dom f*. Conversely, if f is
w-strongly convex, then f* is u~'-smooth on dom f*.

5. If f is closed and convex, then'y € df (x) if and only if x € 3f™*(y).

Proposition A.12 (Fenchel-Young Inequality) Let f* be the conjugate function
of f, then

f®+ Ay = (xy).

256 A Mathematical Preliminaries

Definition A.17 (Lagrangian Function) Given a constrained problem:

min J(x),
s.t. Ax =D,
g(x) <0, (A.10)
where A € R”*" and g(x) = (g1(X),--- , &p (x))T, the Lagrangian function is

L(Xa u, V) = f(X) + (ua AX - b) + <Va g(X)>)

where v > 0.

Definition A.18 (Lagrange Dual Function) Given a constrained problem (A.10),
the Lagrange dual function is

d(a,v) = min L(x, u, V),
xeC

where C is the intersection of the domains of f and g. The domain of the dual
functionis D = {(u, v)|[v > 0,d(u, v) > —oo}.

Definition A.19 (Dual Problem) Given a constrained problem (A.10), the dual
problem is

max d(a,v), s.r. (a,v) €D,
uv

where D is the domain of d(u, v). Accordingly, Problem (A.10) is called the primal
problem.

Definition A.20 (Slater’s Condition) For convex primal problem (A.10), if there
exists an Xg such that

Axo=b, gi(x0)<0,iel;, and gi(x0) <0, i€l

where 71 and 7 are the sets of indices of linear and nonlinear inequality constraints,
respectively, then the Slater’s condition holds.

Proposition A.13 (Properties of Dual Problem)

1. d(u, v) is always a concave function, even if the primal problem (A.10) is not
convex.

2. The primal and the dual optimal values, f* and d*, always satisfy the weak

duality: f* > d*.

When the Slater’s condition holds, the strong duality holds: f* = d*.

4. Letx(u, v) € Argmin L(x, u, V), then (Ax(u, v) — b, g(x(u, v))) € dd(u, v).

xeC

w

A Mathematical Preliminaries 257

Definition A.21 (KKT Point and KKT Condition) (x, u, v) is called a Karush—
Kuhn-Tucker (KKT) point of Problem (A.10) if

1. Stationarity: 0 € 3 (x) + ATu+ > v;dg;(x).
2. Primal feasibility: Ax = b, g;(x) <0,i € [p].

3. Complementary slackness: v;g;(x) = 0,i € [p].
4. Dual feasibility: v; > 0,i € [p].

The above conditions are called the KKT condition of Problem (A.10). They are the
optimality condition of Problem (A.10) when Problem (A.10) is convex and satisfies
the Slater’s condition.

Proposition A.14 When f(x) and gi(x), i € [p], in Problem (A.10) are all
convex,

1. Every KKT point is a saddle point of the Lagrangian function.
2. (x*,u*, v*) is a pair of the primal and the dual solutions with zero dual gap iff it
satisfies the KKT condition.

Definition A.22 (Compact Set) A subset S of R” is called compact if it is both
bounded and closed.

Definition A.23 (Convex Hull) The convex hull of a set X, denoted as conv(X), is
the set of all convex combinations of points in X

k
conv(X) = ! Za;x;

i=1

k
X; EX,O[,’ ZO,iE[k],ZO{i :1}
i=1

Theorem A.1 (Danskin’s Theorem) Let Z be a compact subset of R™, and let
¢ : R" x Z — R be continuous and such that ¢ (-, z) : R" — R is convex for each
z € Z. Define f : R" - Rby f(x) = ma%uj)(x, z) and

ze

2w

¢(x,2) = Igleégwﬁ(x, z) } .

If ¢ (-, z) is differentiable for all z € Z and V¢ (X, -) is continuous on Z for each
X, then

f (x) = conv{Vyip(x,2)|z € Z(x)}, VxeR"

Definition A.24 (Saddle Point) (x*,1*) is called a saddle point of function
f(x,A) : C x D — Rifit satisfies the following inequalities:

F&* L) < fX A < f(x,A%), VxeC,AeD.

258 A Mathematical Preliminaries

Lemma A.3 (Hoffman’s Bound [2]) Consider the non-empty polyhedron
X = {x|Ax = a, Bx < b}.

Then there exists a constant 0, depending only on [AT ,BT1T, such that for any x
we have

dist(x, X)? < 0(|Ax — a[|* + [|[Bx — b4 |%),

where [-]4+ means the projection to the non-negative orthant.

A.4 Nonconvex Analysis

Definition A.25 (Proper Function) A function g : R” — (—o0, +00] is said to
be proper if dom g # &, where dom g = {x € R" : g(x) < +o00}.

We only consider proper functions in this book.
Definition A.26 (Lower Semicontinuous Function) A function ¢ : R" —
(—o00, +00] is said to be lower semicontinuous at point Xg if

liminf g(x) > g(xp).
X—>X(

Definition A.27 (Coercive Function) f(x) is called coercive if limjxj—oo

f(x) = oo.

Definition A.28 (Subdifferential) Let f be a proper and lower semicontinuous
function.

1. For a given x edom f, the Fréchet subdifferential of f at x, written as éf (x), is
the set of all vectors u € R”, which satisfies

lim Sy —fx —(u,y—x)
im inf
YAX,Y—X lly — x|l

> 0.

2. The limiting subdifferential, or simply the subdifferential, of f atx € R", written
as af (x), is defined through the following closure process:

af (x) = {ueRn 23 = X, f(xx) > f(X),u; € éf(xk)—>u,k—> oo}

Definition A.29 (Critical Point) A point x is called a critical point of function f
if 0 € 3f (x).

The following lemma describes the properties of subdifferential.

A Mathematical Preliminaries 259

Lemma A4

1. In the nonconvex context, Fermat’s rule remains unchanged: If x € R" is a local
minimizer of g, then 0 € 9g(x).

2. Let (X, uy) be a sequence such that Xy — X, up — u, g(xX¢) — g(x), and
u; € 9g(Xy), thenu € 9g(Xx).

3. If f is a continuously differentiable function, then d(f +g)(x) = V f(X) +9g(X).

References

1. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

2. AJ. Hoffman, On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur.
Stand. 49(4), 263-265 (1952)

3. Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Springer Sci-
ence+Business Media, Berlin, 2004)

Index

A

Accelerated centralized linearized ADMM,
212, 213

Accelerated decentralized linearized ADMM,
222, 223

Accelerated Lagrangian method, 75

Accelerated Linearized ADMM, 25, 54, 55,
61, 62,75, 76,207,212

Accelerated linearized augmented Lagrangian
method (Accelerated linearized
ALM), 84, 85

Accelerated stochastic ADMM (Acc-
SADMM), 164-166

ADMM for RPCA, 136

ADMM with Gaussian back substitution, 90

ADMM with nonlinear constraints, 105

ADMM with prediction-correction, 93, 100,
102, 103

Alternating direction method of multipliers
(ADMM), xvii, 1-6, 11, 16, 19,
21, 22,25, 26,29, 31, 34, 37, 40,
44,53, 54,76, 86,97,99, 100,
103-105, 109, 113, 114, 135, 136,
144,153, 163, 207, 208, 210, 214,
238,241-246

Asynchronous ADMM, 6, 207, 223-225, 238

Augmented Lagrangian function, 13, 16, 86,
104, 115, 136, 144,192, 198, 208,
214,226, 227, 246

Augmented Lagrangian method (ALM), 5,
12-16, 18

B

Bregman ADMM, 40, 44,47, 51,83, 113, 115,
123

Bregman augmented Lagrangian method
(Bregman ALM), 83

Bregman distance, 5, 17, 18,40, 119, 123, 191,
197, 250, 255

Bregman method, 17, 18

C

Cauchy-Schwartz inequality, 125, 146, 156,
173,250

Centralized ADMM, 208, 209, 213

Centralized linearized ADMM, 210, 211,213

Centralized network, 207, 208

Coercive function, 118, 258

Compact set, 257

Conjugate function, 12, 250, 255

Consensus problem, 1,3, 6

D

Danskin’s theorem, 12, 14, 131, 257

Decentralized ADMM, 214, 218, 223

Decentralized linearized ADMM, 220, 221,
223

Decentralized network, 207,213

Distributed ADMM, xvii, 238

Distributed linearized ADMM with parallel
splitting, 239

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 261
Z. Lin et al., Alternating Direction Method of Multipliers for Machine Learning,

https://doi.org/10.1007/978-981-16-9840-8

https://doi.org/10.1007/978-981-16-9840-8

262

Douglas-Rachford splitting (DRS), 19-22
Dual ascent, 11, 12, 14

Dual function, 12, 13,21

Dual problem, 12, 15, 21, 127, 256

Dual subgradient ascent, 12

E
Ergodic sense, 4, 5,31, 34,47, 62, 163,243
Error bound condition, 35, 37-39

F
Fenchel-Young Inequality, 255
Finite-sum problem, 143, 163, 196

G
Gaussian back substitution, 5, 87, 90, 91, 94

H
Hoffman’s bound, 128, 258

J
Jensen’s inequality, 162, 252

K

KKT condition, 26, 125, 128, 219, 241, 242,
257

KKT point, 26, 37, 106, 115, 120, 134, 139,
163,192, 199, 204, 209, 226, 238,
257

L

Lagrange dual function, 256

Lagrange multiplier, 12, 22, 242

Lagrangian function, 11, 13,97, 166, 256

Laplacian matrix, 216, 217,219, 220,251

Learning-based ADMM, 5

Linearized ADMM (LADMM), 4, 25,42, 44,
53,55,74,76,96, 97, 100, 101,
103, 114, 207, 212, 242, 244

Linearized ADMM with parallel splitting,
94-96, 100, 238

Linearized augmented Lagrangian method
(Linearized ALM), 6, 82, 94, 96,
207,218

Lower semicontinuous function, 113, 118, 258

Lyapunov function, 192, 199

Index

M

Maximal monotone operator, 19, 20, 254
Momentum technique, 144, 163

Monotone operator, 254

Monotonicity, 14, 28, 32, 33, 48, 254
Multi-block ADMM, 4, 86, 94

Multi-block Bregman ADMM, 113, 114, 191
Multilinear constraints, 135

N

Nesterov’s acceleration, 4, 5, 54
Non-ergodic sense, 4, 31,47, 62, 144
Non-negative matrix factorization, 5, 135
Nonconvex ADMM, 5

Nonconvex distributed ADMM, 207, 238
Nonconvex SADMM, 191, 192, 196, 204

(0]
Offline problem, 143, 144,153
Operator splitting, 11, 19-21

P

Parallel splitting, 5, 94-96, 238, 239

Penalty parameter, 13, 242, 243,246

Prediction-correction, 91, 94

Primal problem, 12, 256

Proximal ADMM, 5, 123

Proximal ADMM with exponential averaging,
113,123, 124

Proximal augmented Lagrangian function, 123

Proximal mapping, 42, 44, 163, 210, 220, 238,
245,250

Proximal point method, 15

R
Robust principal component analysis (RPCA),
1, 2,4, 5,113,135, 136

S

Saddle point, 98, 257

Shifted Lagrangian function, 166

Singular value decomposition (SVD), 2, 118,
219,251

Slater’s condition, 256

SPIDER-ADMM, 197, 199, 204

Split Bregman method, 17, 19

Stochastic ADMM (SADMM), xvii, 5, 144,
145,163, 191

Stochastic average gradient (SAG), 153

Index 263

Stochastic gradient descent (SGD), 153 U

Stochastic Path-Integrated Differential Unified ADMM framework, 99-102
EstimatoR (SPIDER), 5, 196

Stochastic variance reduced gradient (SVRG),

153
Strong duality, 12, 256 Variance reduction (VR), 5, 144, 152, 153,
SVRG-ADMM, 153, 166 163, 191, 196, 204

Synchronous ADMM, 224, 238 Variational inequality, 4, 97-100

	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Book
	Contents
	Acronyms
	1 Introduction
	1.1 Examples of Constrained Optimization Problems in Machine Learning
	1.2 Sketch of Representative Works on ADMM
	References

	2 Derivations of ADMM
	2.1 Lagrangian Viewpoint of ADMM
	2.1.1 Dual Ascent
	2.1.2 Augmented Lagrangian Method
	2.1.3 Alternating Direction Method of Multipliers
	2.1.4 Relation to the Split Bregman Method

	2.2 Operator Splitting Viewpoint of ADMM
	2.2.1 Douglas–Rachford splitting
	2.2.2 From DRS to ADMM

	References

	3 ADMM for Deterministic and Convex Optimization
	3.1 Original ADMM
	3.1.1 Convergence Analysis
	3.1.2 Sublinear Convergence Rate
	3.1.2.1 Non-ergodic Convergence Rate
	3.1.2.2 Ergodic Convergence Rate

	3.1.3 Linear Convergence Rate
	3.1.3.1 Linear Convergence Under the Strong Convexity and Smoothness Assumption
	3.1.3.2 Linear Convergence Under the Error Bound Condition

	3.2 Bregman ADMM
	3.2.1 Sublinear Convergence
	3.2.1.1 Ergodic Convergence Rate
	3.2.1.2 Non-ergodic Convergence Rate

	3.2.2 Linear Convergence

	3.3 Accelerated Linearized ADMM
	3.3.1 Sublinear Convergence Rate
	3.3.2 Linear Convergence Rate

	3.4 Special Case: Linearized Augmented Lagrangian Method and Its Acceleration
	3.5 Multi-block ADMM
	3.5.1 Gaussian Back Substitution
	3.5.2 Prediction-Correction
	3.5.3 Linearized ADMM with Parallel Splitting
	3.5.4 Combining the Serial and the Parallel Update Orders

	3.6 Variational Inequality Perspective
	3.6.1 Unified Framework in Variational Inequality
	3.6.2 Unified Convergence Rate Analysis

	3.7 The Case of Nonlinear Constraints
	References

	4 ADMM for Nonconvex Optimization
	4.1 Multi-block Bregman ADMM
	4.1.1 With More Assumptions on the Objectives

	4.2 Proximal ADMM with Exponential Averaging
	4.3 ADMM for Multilinearly Constrained Optimization
	References

	5 ADMM for Stochastic Optimization
	5.1 Stochastic ADMM
	5.2 Variance Reduction
	5.3 Momentum Acceleration
	5.4 Nonconvex Stochastic ADMM and Its Acceleration
	5.4.1 Nonconvex SADMM
	5.4.2 SPIDER Acceleration

	References

	6 ADMM for Distributed Optimization
	6.1 Centralized Optimization
	6.1.1 ADMM
	6.1.2 Linearized ADMM
	6.1.3 Accelerated Linearized ADMM

	6.2 Decentralized Optimization
	6.2.1 ADMM
	6.2.1.1 Convergence Analysis

	6.2.2 Linearized ADMM
	6.2.3 Accelerated Linearized ADMM

	6.3 Asynchronous Distributed ADMM
	6.3.1 Convergence
	6.3.2 Linear Convergence Rate

	6.4 Nonconvex Distributed ADMM
	6.5 ADMM with Generally Linear Constraints
	References

	7 Practical Issues and Conclusions
	7.1 Practical Issues
	7.1.1 Stopping Criterion
	7.1.2 Choice of Penalty Parameters
	7.1.3 Avoiding Excessive Auxiliary Variables
	7.1.4 Solving Subproblems Inexactly
	7.1.5 Other Considerations

	7.2 Conclusions
	References

	A Mathematical Preliminaries
	A.1 Notations
	A.2 Algebra and Probability
	A.3 Convex Analysis
	A.4 Nonconvex Analysis
	References

	Index

